ﻻ يوجد ملخص باللغة العربية
The work analyzes a one-dimensional viscoelastic model of blood vessel growth under nonlinear friction with surroundings, and provides numerical simulations for various growing cases. For the nonlinear differential equations, two sufficient conditions are proven to guarantee the global existence of biologically meaningful solutions. Examples with breakdown solutions are captured by numerical approximations. Numerical simulations demonstrate this model can reproduce angiogenesis experiments under various biological conditions including blood vessel extension without proliferation and blood vessel regression.
This paper studies the following system of differential equations modeling tumor angiogenesis in a bounded smooth domain $Omega subset mathbb{R}^N$ ($N=1,2$): $$label{0} left{begin{array}{ll} p_t=Delta p- ablacdotp p(displaystylefrac alpha {1+c}
There is currently limited understanding of the role played by haemodynamic forces on the processes governing vascular development. One of many obstacles to be overcome is being able to measure those forces, at the required resolution level, on vesse
To study the effect of stress within the thin amorphous film generated atop Si irradiated by Ar+, we model the film as a viscoelastic medium into which the ion beam continually injects biaxial compressive stress. We find that at normal incidence, the
We prove the existence of novel, shock-fronted travelling wave solutions to a model of wound healing angiogenesis studied in Pettet et al., IMA J. Math. App. Med., 17, 2000. In this work, the authors showed that for certain parameter values, a hetero
We consider a fluid model including viscoelastic and viscoplastic effects. The state is given by the fluid velocity and an internal stress tensor that is transported along the flow with the Zaremba-Jaumann derivative. Moreover, the stress tensor obey