ﻻ يوجد ملخص باللغة العربية
In this paper, we present a semiclassical description of surface waves or modes in an elastic medium near a boundary, in spatial dimension three. The medium is assumed to be essentially stratified near the boundary at some scale comparable to the wave length. Such a medium can also be thought of as a surficial layer (which can be thick) overlying a half space. The analysis is based on the work of Colin de Verdi`ere on acoustic surface waves. The description is geometric in the boundary and locally spectral beneath it. Effective Hamiltonians of surface waves correspond with eigenvalues of ordinary differential operators, which, to leading order, define their phase velocities. Using these Hamiltonians, we obtain pseudodifferential surface wave equations. We then construct a parametrix. Finally, we discuss Weyls formulas for counting surface modes, and the decoupling into two classes of surface waves, that is, Rayleigh and Love waves, under appropriate symmetry conditions.
We justify WKB analysis for Hartree equation in space dimension at least three, in a regime which is supercritical as far as semiclassical analysis is concerned. The main technical remark is that the nonlinear Hartree term can be considered as a semi
This paper is concerned with the direct and inverse random source scattering problems for elastic waves where the source is assumed to be driven by an additive white noise. Given the source, the direct problem is to determine the displacement of the
In this paper, we consider the nonlinear inhomogeneous compressible elastic waves in three spatial dimensions when the density is a small disturbance around a constant state. In homogeneous case, the almost global existence was established by Klainer
We investigate the orbital stability and instability of standing waves for two classes of Klein-Gordon equations in the semi-classical regime.
We analyze a mathematical model of elastic dislocations with applications to geophysics, where by an elastic dislocation we mean an open, oriented Lipschitz surface in the interior of an elastic solid, across which there is a discontinuity of the dis