ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact non-linear equations for cosmological perturbations

73   0   0.0 ( 0 )
 نشر من قبل Jinn-Ouk Gong
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a complete set of exact and fully non-linear equations describing all three types of cosmological perturbations -- scalar, vector and tensor perturbations. We derive the equations in a thoroughly gauge-ready manner, so that any spatial and temporal gauge conditions can be employed. The equations are completely general without any physical restriction except that we assume a flat homogeneous and isotropic universe as a background. We also comment briefly on the application of our formulation to the non-expanding Minkowski background.



قيم البحث

اقرأ أيضاً

We study a class of almost scale-invariant modified gravity theories, using a particular form of $f(R, G) = alpha R^2 + beta G log G$ where $R$ and $G$ are the Ricci and Gauss-Bonnet scalars, respectively and $alpha$, $beta$ are arbitrary constants. We derive the Einstein-like field equations to first order in cosmological perturbation theory in longitudinal gauge.
We explain in detail the quantum-to-classical transition for the cosmological perturbations using only the standard rules of quantum mechanics: the Schrodinger equation and Borns rule applied to a subsystem. We show that the conditioned, i.e. intrins ic, pure state of the perturbations, is driven by the interactions with a generic environment, to become increasingly localized in field space as a mode exists the horizon during inflation. With a favourable coupling to the environment, the conditioned state of the perturbations becomes highly localized in field space due to the expansion of spacetime by a factor of roughly exp(-c N), where N~50 and c is a model dependent number of order 1. Effectively the state rapidly becomes specified completely by a point in phase space and an effective, classical, stochastic process emerges described by a classical Langevin equation. The statistics of the stochastic process is described by the solution of the master equation that describes the perturbations coupled to the environment.
We study the differences and equivalences between the non-perturbative description of the evolution of cosmic structure furnished by the Szekeres dust models (a non-spherical exact solution of Einsteins equations) and the dynamics of Cosmological Per turbation Theory (CPT) for dust sources in a $Lambda$CDM background. We show how the dynamics of Szekeres models can be described by evolution equations given in terms of exact fluctuations that identically reduce (at all orders) to evolution equations of CPT in the comoving isochronous gauge. We explicitly show how Szekeres linearised exact fluctuations are specific (deterministic) realisations of standard linear perturbations of CPT given as random fields but, as opposed to the latter perturbations, they can be evolved exactly into the full non-linear regime. We prove two important results: (i) the conservation of the curvature perturbation (at all scales) also holds for the appropriate approximation of the exact Szekeres fluctuations in a $Lambda$CDM background, and (ii) the different collapse morphologies of Szekeres models yields, at nonlinear order, different functional forms for the growth factor that follows from the study of redshift space distortions. The metric based potentials used in linear CPT are computed in terms of the parameters of the linearised Szekeres models, thus allowing us to relate our results to linear CPT results in other gauges. We believe that these results provide a solid starting stage to examine the role of non-perturbative General Relativity in current cosmological research.
We compute the third order gauge invariant action for scalar-graviton interactions in the Jordan frame. We demonstrate that the gauge invariant action for scalar and tensor perturbations on one physical hypersurface only differs from that on another physical hypersurface via terms proportional to the equation of motion and boundary terms, such that the evolution of non-Gaussianity may be called unique. Moreover, we demonstrate that the gauge invariant curvature perturbation and graviton on uniform field hypersurfaces in the Jordan frame are equal to their counterparts in the Einstein frame. These frame independent perturbations are therefore particularly useful in relating results in different frames at the perturbative level. On the other hand, the field perturbation and graviton on uniform curvature hypersurfaces in the Jordan and Einstein frame are non-linearly related, as are their corresponding actions and $n$-point functions.
61 - Jaiyul Yoo 2016
We derive the exact third-order analytic solution of the matter density fluctuation in the proper-time hypersurface in a $Lambda$CDM universe, accounting for the explicit time-dependence and clarifying the relation to the initial condition. Furthermo re, we compare our analytic solution to the previous calculation in the comoving gauge, and to the standard Newtonian perturbation theory by providing Fourier kernels for the relativistic effects. Our results provide an essential ingredient for a complete description of galaxy bias in the relativistic context.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا