ﻻ يوجد ملخص باللغة العربية
We explain in detail the quantum-to-classical transition for the cosmological perturbations using only the standard rules of quantum mechanics: the Schrodinger equation and Borns rule applied to a subsystem. We show that the conditioned, i.e. intrinsic, pure state of the perturbations, is driven by the interactions with a generic environment, to become increasingly localized in field space as a mode exists the horizon during inflation. With a favourable coupling to the environment, the conditioned state of the perturbations becomes highly localized in field space due to the expansion of spacetime by a factor of roughly exp(-c N), where N~50 and c is a model dependent number of order 1. Effectively the state rapidly becomes specified completely by a point in phase space and an effective, classical, stochastic process emerges described by a classical Langevin equation. The statistics of the stochastic process is described by the solution of the master equation that describes the perturbations coupled to the environment.
We compute the third order gauge invariant action for scalar-graviton interactions in the Jordan frame. We demonstrate that the gauge invariant action for scalar and tensor perturbations on one physical hypersurface only differs from that on another
In this paper we continue a study of cosmological perturbations in the conformal gravity theory. In previous work we had obtained a restricted set of solutions to the cosmological fluctuation equations, solutions that were required to be both transve
By making a suitable generalization of the Starobinsky stochastic inflation, we propose a classical phase space formulation of stochastic inflation which may be used for a quantitative study of decoherence of cosmological perturbations during inflati
It is known that some cosmological perturbations are conformal invariant. This facilitates the studies of perturbations within some gravitational theories alternative to general relativity, for example the scalar-tensor theory, because it is possible
We introduce a double power series method for finding approximate analytical solutions for systems of differential equations commonly found in cosmological perturbation theory. The method was set out, in a non-cosmological context, by Feshchenko, Shk