ترغب بنشر مسار تعليمي؟ اضغط هنا

Frame independent cosmological perturbations

166   0   0.0 ( 0 )
 نشر من قبل Jan Weenink
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the third order gauge invariant action for scalar-graviton interactions in the Jordan frame. We demonstrate that the gauge invariant action for scalar and tensor perturbations on one physical hypersurface only differs from that on another physical hypersurface via terms proportional to the equation of motion and boundary terms, such that the evolution of non-Gaussianity may be called unique. Moreover, we demonstrate that the gauge invariant curvature perturbation and graviton on uniform field hypersurfaces in the Jordan frame are equal to their counterparts in the Einstein frame. These frame independent perturbations are therefore particularly useful in relating results in different frames at the perturbative level. On the other hand, the field perturbation and graviton on uniform curvature hypersurfaces in the Jordan and Einstein frame are non-linearly related, as are their corresponding actions and $n$-point functions.



قيم البحث

اقرأ أيضاً

We explain in detail the quantum-to-classical transition for the cosmological perturbations using only the standard rules of quantum mechanics: the Schrodinger equation and Borns rule applied to a subsystem. We show that the conditioned, i.e. intrins ic, pure state of the perturbations, is driven by the interactions with a generic environment, to become increasingly localized in field space as a mode exists the horizon during inflation. With a favourable coupling to the environment, the conditioned state of the perturbations becomes highly localized in field space due to the expansion of spacetime by a factor of roughly exp(-c N), where N~50 and c is a model dependent number of order 1. Effectively the state rapidly becomes specified completely by a point in phase space and an effective, classical, stochastic process emerges described by a classical Langevin equation. The statistics of the stochastic process is described by the solution of the master equation that describes the perturbations coupled to the environment.
In this paper we continue a study of cosmological perturbations in the conformal gravity theory. In previous work we had obtained a restricted set of solutions to the cosmological fluctuation equations, solutions that were required to be both transve rse and synchronous. Here we present the general solution. We show that in a conformal invariant gravitational theory fluctuations around any background that is conformal to flat (backgrounds that include the cosmologically interesting Robertson-Walker and de Sitter geometries) can be constructed from the (known) solutions to fluctuations around a flat background. For this construction to hold it is not necessary that the perturbative geometry associated with the fluctuations itself be conformal to flat. Using this construction we show that in a conformal Robertson-Walker cosmology early universe fluctuations grow as $t^4$. We present the scalar, vector, tensor decomposition of the fluctuations in the conformal theory, and compare and contrast our work with the analogous treatment of fluctuations in the standard Einstein gravity theory.
By making a suitable generalization of the Starobinsky stochastic inflation, we propose a classical phase space formulation of stochastic inflation which may be used for a quantitative study of decoherence of cosmological perturbations during inflati on. The precise knowledge of how much cosmological perturbations have decohered is essential to the understanding of acoustic oscillations of cosmological microwave background (CMB) photons. In order to show how the method works, we provide the relevant equations for a self-interacting inflaton field. For pedagogical reasons and to provide a link to the field theoretical case, we consider the quantum stochastic harmonic oscillator.
167 - Mingzhe Li , Yicen Mou 2015
It is known that some cosmological perturbations are conformal invariant. This facilitates the studies of perturbations within some gravitational theories alternative to general relativity, for example the scalar-tensor theory, because it is possible to do equivalent analysis in a certain frame in which the perturbation equations are simpler. In this paper we revisit the problem of conformal invariances of cosmological perturbations in terms of the covariant approach in which the perturbation variables have clear geometric and physical meanings. We show that with this approach the conformal invariant perturbations are easily identified.
We introduce a double power series method for finding approximate analytical solutions for systems of differential equations commonly found in cosmological perturbation theory. The method was set out, in a non-cosmological context, by Feshchenko, Shk il and Nikolenko (FSN) in 1966, and is applicable to cases where perturbations are on sub-horizon scales. The FSN method is essentially an extension of the well known Wentzel-Kramers-Brillouin (WKB) method for finding approximate analytical solutions for ordinary differential equations. The FSN method we use is applicable well beyond perturbation theory to solve systems of ordinary differential equations, linear in the derivatives, that also depend on a small parameter, which here we take to be related to the inverse wave-number. We use the FSN method to find new approximate oscillating solutions in linear order cosmological perturbation theory for a flat radiation-matter universe. Together with this models well known growing and decaying Meszaros solutions, these oscillating modes provide a complete set of sub-horizon approximations for the metric potential, radiation and matter perturbations. Comparison with numerical solutions of the perturbation equations shows that our approximations can be made accurate to within a typical error of 1%, or better. We also set out a heuristic method for error estimation. A Mathematica notebook which implements the double power series method is made available online.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا