ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Spherical Szekeres models in the language of Cosmological Perturbations

111   0   0.0 ( 0 )
 نشر من قبل Carlos Hidalgo
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the differences and equivalences between the non-perturbative description of the evolution of cosmic structure furnished by the Szekeres dust models (a non-spherical exact solution of Einsteins equations) and the dynamics of Cosmological Perturbation Theory (CPT) for dust sources in a $Lambda$CDM background. We show how the dynamics of Szekeres models can be described by evolution equations given in terms of exact fluctuations that identically reduce (at all orders) to evolution equations of CPT in the comoving isochronous gauge. We explicitly show how Szekeres linearised exact fluctuations are specific (deterministic) realisations of standard linear perturbations of CPT given as random fields but, as opposed to the latter perturbations, they can be evolved exactly into the full non-linear regime. We prove two important results: (i) the conservation of the curvature perturbation (at all scales) also holds for the appropriate approximation of the exact Szekeres fluctuations in a $Lambda$CDM background, and (ii) the different collapse morphologies of Szekeres models yields, at nonlinear order, different functional forms for the growth factor that follows from the study of redshift space distortions. The metric based potentials used in linear CPT are computed in terms of the parameters of the linearised Szekeres models, thus allowing us to relate our results to linear CPT results in other gauges. We believe that these results provide a solid starting stage to examine the role of non-perturbative General Relativity in current cosmological research.



قيم البحث

اقرأ أيضاً

The quasi-spherical Szekeres dust solutions are a generalization of the spherically symmetric Lemaitre-Tolman-Bondi dust models where the spherical shells of constant mass are non-concentric. The quasi-spherical Szekeres dust solutions can be conside red as cosmological models and are potentially models for the formation of primordial black holes in the early universe. Any collapsing quasi-spherical Szekeres dust solution where an apparent horizon covers all shell-crossings that will occur can be considered as a model for the formation of a black hole. In this paper we will show that the apparent horizon can be detected by a Cartan invariant. We will show that particular Cartan invariants characterize properties of these solutions which have a physical interpretation such as: the expansion or contraction of spacetime itself, the relative movement of matter shells, shell-crossings and the appearance of necks and bellies.
We present a complete set of exact and fully non-linear equations describing all three types of cosmological perturbations -- scalar, vector and tensor perturbations. We derive the equations in a thoroughly gauge-ready manner, so that any spatial and temporal gauge conditions can be employed. The equations are completely general without any physical restriction except that we assume a flat homogeneous and isotropic universe as a background. We also comment briefly on the application of our formulation to the non-expanding Minkowski background.
We explain in detail the quantum-to-classical transition for the cosmological perturbations using only the standard rules of quantum mechanics: the Schrodinger equation and Borns rule applied to a subsystem. We show that the conditioned, i.e. intrins ic, pure state of the perturbations, is driven by the interactions with a generic environment, to become increasingly localized in field space as a mode exists the horizon during inflation. With a favourable coupling to the environment, the conditioned state of the perturbations becomes highly localized in field space due to the expansion of spacetime by a factor of roughly exp(-c N), where N~50 and c is a model dependent number of order 1. Effectively the state rapidly becomes specified completely by a point in phase space and an effective, classical, stochastic process emerges described by a classical Langevin equation. The statistics of the stochastic process is described by the solution of the master equation that describes the perturbations coupled to the environment.
We study cosmological perturbation theory within the framework of unimodular gravity. We show that the Lagrangian constraint on the determinant of the metric required by unimodular gravity leads to an extra constraint on the gauge freedom of the metr ic perturbations. Although the main equation of motion for the gravitational potential remains the same, the shift variable, which is gauge artifact in General Relativity, cannot be set to zero in unimodular gravity. This non-vanishing shift variable affects the propagation of photons throughout the cosmological evolution and therefore modifies the Sachs-Wolfe relation between the relativistic gravitational potential and the microwave temperature anisotropies. However, for adiabatic fluctuations the difference between the result in General Relativity and unimodular gravity is suppressed on large angular scales. Thus, no strong constraints on the theory can be derived.
We show that the full dynamical freedom of the well known Szekeres models allows for the description of elaborated 3--dimensional networks of cold dark matter structures (over--densities and/or density voids) undergoing pancake collapse. By reducing Einsteins field equations to a set of evolution equations, which themselves reduce in the linear limit to evolution equations for linear perturbations, we determine the dynamics of such structures, with the spatial comoving location of each structure uniquely specified by standard early Universe initial conditions. By means of a representative example we examine in detail the density contrast, the Hubble flow and peculiar velocities of structures that evolved, from linear initial data at the last scattering surface, to fully non--linear 10--20 Mpc. scale configurations today. To motivate further research, we provide a qualitative discussion on the connection of Szekeres models with linear perturbations and the pancake collapse of the Zeldovich approximation. This type of structure modelling provides a coarse grained -- but fully relativistic non--linear and non--perturbative -- description of evolving large scale cosmic structures before their virialisation, and as such it has an enormous potential for applications in cosmological research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا