ﻻ يوجد ملخص باللغة العربية
The geometric, aesthetic, and mathematical elegance of origami is being recognized as a powerful pathway to self-assembly of micro and nano-scale machines with programmable mechanical properties. The typical approach to designing the mechanical response of an ideal origami machine is to include mechanisms where mechanical constraints transform applied forces into a desired motion along a narrow set of degrees of freedom. In fact, to date, most design approaches focus on building up complex mechanisms from simple ones in ways that preserve each individual mechanisms degree of freedom (DOF), with examples ranging from simple robotic arms to homogenous arrays of identical vertices, such as the well-known Miura-ori. However, such approaches typically require tight fabrication tolerances, and often suffer from parasitic compliance. In this work, we demonstrate a technique in which high-degree-of-freedom mechanisms associated with single vertices are heterogeneously combined so that the coupled phase spaces of neighboring vertices are pared down to a controlled range of motions. This approach has the advantage that it produces mechanisms that retain the DOF at each vertex, are robust against fabrication tolerances and parasitic compliance, but nevertheless effectively constrain the range of motion of the entire machine. We demonstrate the utility of this approach by mapping out the configuration space for the modified Miura-ori vertex of degree 6, and show that when strung together, their combined configuration spaces create mechanisms that isolate deformations, constrain the configuration topology of neighboring vertices, or lead to sequential bistable folding throughout the entire origami sheet.
We explore the surprisingly rich energy landscape of origami-like folding planar structures. We show that the configuration space of rigid-paneled degree-4 vertices, the simplest building blocks of such systems, consists of at least two distinct bran
Four rigid panels connected by hinges that meet at a point form a 4-vertex, the fundamental building block of origami metamaterials. Here we show how the geometry of 4-vertices, given by the sector angles of each plate, affects their folding behavior
Inspired by the allure of additive fabrication, we pose the problem of origami design from a new perspective: how can we grow a folded surface in three dimensions from a seed so that it is guaranteed to be isometric to the plane? We solve this proble
Geometric compatibility constraints dictate the mechanical response of soft systems that can be utilized for the design of mechanical metamaterials such as the negative Poisson ratio Miura-ori origami crease pattern. We examine the broad family of cr
Kagome antiferromagnets are known to be highly frustrated and degenerate when they possess simple, isotropic interactions. We consider the entire class of these magnets when their interactions are spatially anisotropic. We do so by identifying a cert