ﻻ يوجد ملخص باللغة العربية
We explore the surprisingly rich energy landscape of origami-like folding planar structures. We show that the configuration space of rigid-paneled degree-4 vertices, the simplest building blocks of such systems, consists of at least two distinct branches meeting at the flat state. This suggests that generic vertices are at least bistable, but we find that the nonlinear nature of these branches allows for vertices with as many as five distinct stable states. In vertices with collinear folds and/or symmetry, more branches emerge leading to up to six stable states. Finally, we introduce a procedure to tile arbitrary 4-vertices while preserving their stable states, thus allowing the design and creation of multistable origami metasheets.
Four rigid panels connected by hinges that meet at a point form a 4-vertex, the fundamental building block of origami metamaterials. Here we show how the geometry of 4-vertices, given by the sector angles of each plate, affects their folding behavior
The geometric, aesthetic, and mathematical elegance of origami is being recognized as a powerful pathway to self-assembly of micro and nano-scale machines with programmable mechanical properties. The typical approach to designing the mechanical respo
We develop an intrinsic necessary and sufficient condition for single-vertex origami crease patterns to be able to fold rigidly. We classify such patterns in the case where the creases are pre-assigned to be mountains and valleys as well as in the un
Rigid origami, with applications ranging from nano-robots to unfolding solar sails in space, describes when a material is folded along straight crease line segments while keeping the regions between the creases planar. Prior work has found explicit e
Traditional origami starts from flat surfaces, leading to crease patterns consisting of Euclidean vertices. However, Euclidean vertices are limited in their folding motions, are degenerate, and suffer from misfolding. Here we show how non-Euclidean 4