ﻻ يوجد ملخص باللغة العربية
Given a string $T$, it is known that its suffix tree can be represented using the compact directed acyclic word graph (CDAWG) with $e_T$ arcs, taking overall $O(e_T+e_{{overline{T}}})$ words of space, where ${overline{T}}$ is the reverse of $T$, and supporting some key operations in time between $O(1)$ and $O(log{log{n}})$ in the worst case. This representation is especially appealing for highly repetitive strings, like collections of similar genomes or of version-controlled documents, in which $e_T$ grows sublinearly in the length of $T$ in practice. In this paper we augment such representation, supporting a number of additional queries in worst-case time between $O(1)$ and $O(log{n})$ in the RAM model, without increasing space complexity asymptotically. Our technique, based on a heavy path decomposition of the suffix tree, enables also a representation of the suffix array, of the inverse suffix array, and of $T$ itself, that takes $O(e_T)$ words of space, and that supports random access in $O(log{n})$ time. Furthermore, we establish a connection between the reversed CDAWG of $T$ and a context-free grammar that produces $T$ and only $T$, which might have independent interest.
The compact directed acyclic word graph (CDAWG) of a string $T$ of length $n$ takes space proportional just to the number $e$ of right extensions of the maximal repeats of $T$, and it is thus an appealing index for highly repetitive datasets, like co
We solve the problem of finding interspersed maximal repeats using a suffix array construction. As it is well known, all the functionality of suffix trees can be handled by suffix arrays, gaining practicality. Our solution improves the suffix tree ba
Prediction suffix trees (PST) provide an effective tool for sequence modelling and prediction. Current prediction techniques for PSTs rely on exact matching between the suffix of the current sequence and the previously observed sequence. We present a
For a text given in advance, the substring minimal suffix queries ask to determine the lexicographically minimal non-empty suffix of a substring specified by the location of its occurrence in the text. We develop a data structure answering such queri
Dual-tree algorithms are a widely used class of branch-and-bound algorithms. Unfortunately, developing dual-tree algorithms for use with different trees and problems is often complex and burdensome. We introduce a four-part logical split: the tree, t