ﻻ يوجد ملخص باللغة العربية
The compact directed acyclic word graph (CDAWG) of a string $T$ of length $n$ takes space proportional just to the number $e$ of right extensions of the maximal repeats of $T$, and it is thus an appealing index for highly repetitive datasets, like collections of genomes from similar species, in which $e$ grows significantly more slowly than $n$. We reduce from $O(mlog{log{n}})$ to $O(m)$ the time needed to count the number of occurrences of a pattern of length $m$, using an existing data structure that takes an amount of space proportional to the size of the CDAWG. This implies a reduction from $O(mlog{log{n}}+mathtt{occ})$ to $O(m+mathtt{occ})$ in the time needed to locate all the $mathtt{occ}$ occurrences of the pattern. We also reduce from $O(klog{log{n}})$ to $O(k)$ the time needed to read the $k$ characters of the label of an edge of the suffix tree of $T$, and we reduce from $O(mlog{log{n}})$ to $O(m)$ the time needed to compute the matching statistics between a query of length $m$ and $T$, using an existing representation of the suffix tree based on the CDAWG. All such improvements derive from extracting the label of a vertex or of an arc of the CDAWG using a straight-line program induced by the reversed CDAWG.
Given a string $T$, it is known that its suffix tree can be represented using the compact directed acyclic word graph (CDAWG) with $e_T$ arcs, taking overall $O(e_T+e_{{overline{T}}})$ words of space, where ${overline{T}}$ is the reverse of $T$, and
Embedding approaches have become one of the most pervasive techniques for multi-label classification. However, the training process of embedding methods usually involves a complex quadratic or semidefinite programming problem, or the model may even i
Minimum Label Cut (or Hedge Connectivity) problem is defined as follows: given an undirected graph $G=(V, E)$ with $n$ vertices and $m$ edges, in which, each edge is labeled (with one or multiple labels) from a label set $L={ell_1,ell_2, ..., ell_{|L
Many joint entity relation extraction models setup two separated label spaces for the two sub-tasks (i.e., entity detection and relation classification). We argue that this setting may hinder the information interaction between entities and relations
The optimization version of the Unique Label Cover problem is at the heart of the Unique Games Conjecture which has played an important role in the proof of several tight inapproximability results. In recent years, this problem has been also studied