ﻻ يوجد ملخص باللغة العربية
We solve the problem of finding interspersed maximal repeats using a suffix array construction. As it is well known, all the functionality of suffix trees can be handled by suffix arrays, gaining practicality. Our solution improves the suffix tree based approaches for the repeat finding problem, being particularly well suited for very large inputs. We prove the corrrectness and complexity of the algorithms.
Given a string $T$, it is known that its suffix tree can be represented using the compact directed acyclic word graph (CDAWG) with $e_T$ arcs, taking overall $O(e_T+e_{{overline{T}}})$ words of space, where ${overline{T}}$ is the reverse of $T$, and
Let $mathscr O$ be a set of $n$ disjoint obstacles in $mathbb{R}^2$, $mathscr M$ be a moving object. Let $s$ and $l$ denote the starting point and maximum path length of the moving object $mathscr M$, respectively. Given a point $p$ in ${R}^2$, we sa
For a text given in advance, the substring minimal suffix queries ask to determine the lexicographically minimal non-empty suffix of a substring specified by the location of its occurrence in the text. We develop a data structure answering such queri
A recent series of papers by Andoni, Naor, Nikolov, Razenshteyn, and Waingarten (STOC 2018, FOCS 2018) has given approximate near neighbour search (NNS) data structures for a wide class of distance metrics, including all norms. In particular, these d
Prediction suffix trees (PST) provide an effective tool for sequence modelling and prediction. Current prediction techniques for PSTs rely on exact matching between the suffix of the current sequence and the previously observed sequence. We present a