ﻻ يوجد ملخص باللغة العربية
For a text given in advance, the substring minimal suffix queries ask to determine the lexicographically minimal non-empty suffix of a substring specified by the location of its occurrence in the text. We develop a data structure answering such queries optimally: in constant time after linear-time preprocessing. This improves upon the results of Babenko et al. (CPM 2014), whose trade-off solution is characterized by $Theta(nlog n)$ product of these time complexities. Next, we extend our queries to support concatenations of $O(1)$ substrings, for which the construction and query time is preserved. We apply these generalized queries to compute lexicographically minimal and maximal rotations of a given substring in constant time after linear-time preprocessing. Our data structures mainly rely on properties of Lyndon words and Lyndon factorizations. We combine them with further algorithmic and combinatorial tools, such as fusion trees and the notion of order isomorphism of strings.
We solve the problem of finding interspersed maximal repeats using a suffix array construction. As it is well known, all the functionality of suffix trees can be handled by suffix arrays, gaining practicality. Our solution improves the suffix tree ba
Given a string $T$, it is known that its suffix tree can be represented using the compact directed acyclic word graph (CDAWG) with $e_T$ arcs, taking overall $O(e_T+e_{{overline{T}}})$ words of space, where ${overline{T}}$ is the reverse of $T$, and
We consider the problem of sampling and approximately counting an arbitrary given motif $H$ in a graph $G$, where access to $G$ is given via queries: degree, neighbor, and pair, as well as uniform edge sample queries. Previous algorithms for these ta
In this work, we study longest common substring, pattern matching, and wildcard pattern matching in the asymmetric streaming model. In this streaming model, we have random access to one string and streaming access to the other one. We present streami
Minimum-weight cut (min-cut) is a basic measure of a networks connectivity strength. While the min-cut can be computed efficiently in the sequential setting [Karger STOC96], there was no efficient way for a distributed network to compute its own min-