ﻻ يوجد ملخص باللغة العربية
A tri-colored sum-free set in an abelian group $H$ is a collection of ordered triples in $H^3$, ${(a_i,b_i,c_i)}_{i=1}^m$, such that the equation $a_i+b_j+c_k=0$ holds if and only if $i=j=k$. Using a variant of the lemma introduced by Croot, Lev, and Pach in their breakthrough work on arithmetic-progression-free sets, we prove that the size of any tri-colored sum-free set in $mathbb{F}_2^n$ is bounded above by $6 {n choose lfloor n/3 rfloor}$. This upper bound is tight, up to a factor subexponential in $n$: there exist tri-colored sum-free sets in $mathbb{F}_2^n$ of size greater than ${n choose lfloor n/3 rfloor} cdot 2^{-sqrt{16 n / 3}}$ for all sufficiently large $n$.
We count the ordered sum-free triplets of subsets in the group $mathbb{Z}/pmathbb{Z}$, i.e., the triplets $(A,B,C)$ of sets $A,B,C subset mathbb{Z}/pmathbb{Z}$ for which the equation $a+b=c$ has no solution with $ain A$, $b in B$ and $c in C$. Our ma
We show that, in contrast to the integers setting, almost all even order abelian groups $G$ have exponentially fewer maximal sum-free sets than $2^{mu(G)/2}$, where $mu(G)$ denotes the size of a largest sum-free set in $G$. This confirms a conjecture of Balogh, Liu, Sharifzadeh and Treglown.
We prove that with high probability over the choice of a random graph $G$ from the ErdH{o}s-Renyi distribution $G(n,1/2)$, the $n^{O(d)}$-time degree $d$ Sum-of-Squares semidefinite programming relaxation for the clique problem will give a value of a
A game starts with the empty graph on $n$ vertices, and two player alternate adding edges to the graph. Only moves which do not create a triangle are valid. The game ends when a maximal triangle-free graph is reached. The goal of one player is to end
Let $K_{n}^{r}$ denote the complete $r$-uniform hypergraph on $n$ vertices. A matching $M$ in a hypergraph is a set of pairwise vertex disjoint edges. Recent Ramsey-type results rely on lemmas about the size of monochromatic matchings. A starting poi