ﻻ يوجد ملخص باللغة العربية
We count the ordered sum-free triplets of subsets in the group $mathbb{Z}/pmathbb{Z}$, i.e., the triplets $(A,B,C)$ of sets $A,B,C subset mathbb{Z}/pmathbb{Z}$ for which the equation $a+b=c$ has no solution with $ain A$, $b in B$ and $c in C$. Our main theorem improves on a recent result by Semchankau, Shabanov, and Shkredov using a different and simpler method. Our proof relates previous results on the number of independent sets of regular graphs by Kahn, Perarnau and Perkins, and Csikvari to produce explicit estimates on smaller order terms. We also obtain estimates for the number of sum-free triplets of subsets in a general abelian group.
We show that, in contrast to the integers setting, almost all even order abelian groups $G$ have exponentially fewer maximal sum-free sets than $2^{mu(G)/2}$, where $mu(G)$ denotes the size of a largest sum-free set in $G$. This confirms a conjecture of Balogh, Liu, Sharifzadeh and Treglown.
We determine the shape of all sum-free sets in ${1,dots,n}^2$ of size close to the maximum $frac{3}{5}n^2$, solving a problem of Elsholtz and Rackham. We show that all such asymptotic maximum sum-free sets lie completely in the stripe $frac{4}{5}n-o(
A tri-colored sum-free set in an abelian group $H$ is a collection of ordered triples in $H^3$, ${(a_i,b_i,c_i)}_{i=1}^m$, such that the equation $a_i+b_j+c_k=0$ holds if and only if $i=j=k$. Using a variant of the lemma introduced by Croot, Lev, and
As a fundamental research object, the minimum edge dominating set (MEDS) problem is of both theoretical and practical interest. However, determining the size of a MEDS and the number of all MEDSs in a general graph is NP-hard, and it thus makes sense
We study the problems of bounding the number weak and strong independent sets in $r$-uniform, $d$-regular, $n$-vertex linear hypergraphs with no cross-edges. In the case of weak independent sets, we provide an upper bound that is tight up to the firs