ترغب بنشر مسار تعليمي؟ اضغط هنا

A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique Problem

110   0   0.0 ( 0 )
 نشر من قبل Pravesh Kothari
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that with high probability over the choice of a random graph $G$ from the ErdH{o}s-Renyi distribution $G(n,1/2)$, the $n^{O(d)}$-time degree $d$ Sum-of-Squares semidefinite programming relaxation for the clique problem will give a value of at least $n^{1/2-c(d/log n)^{1/2}}$ for some constant $c>0$. This yields a nearly tight $n^{1/2 - o(1)}$ bound on the value of this program for any degree $d = o(log n)$. Moreover we introduce a new framework that we call emph{pseudo-calibration} to construct Sum of Squares lower bounds. This framework is inspired by taking a computational analog of Bayesian probability theory. It yields a general recipe for constructing good pseudo-distributions (i.e., dual certificates for the Sum-of-Squares semidefinite program), and sheds further light on the ways in which this hierarchy differs from others.



قيم البحث

اقرأ أيضاً

223 - Raghu Meka , Avi Wigderson 2013
Finding cliques in random graphs and the closely related planted clique variant, where a clique of size t is planted in a random G(n,1/2) graph, have been the focus of substantial study in algorithm design. Despite much effort, the best known polynom ial-time algorithms only solve the problem for t = Theta(sqrt(n)). Here we show that beating sqrt(n) would require substantially new algorithmic ideas, by proving a lower bound for the problem in the sum-of-squares (or Lasserre) hierarchy, the most powerful class of semi-definite programming algorithms we know of: r rounds of the sum-of-squares hierarchy can only solve the planted clique for t > sqrt(n)/(C log n)^(r^2). Previously, no nontrivial lower bounds were known. Our proof is formulated as a degree lower bound in the Positivstellensatz algebraic proof system, which is equivalent to the sum-of-squares hierarchy. The heart of our (average-case) lower bound is a proof that a certain random matrix derived from the input graph is (with high probability) positive semidefinite. Two ingredients play an important role in this proof. The first is the classical theory of association schemes, applied to the average and variance of that random matrix. The second is a new large deviation inequality for matrix-valued polynomials. Our new tail estimate seems to be of independent interest and may find other applications, as it generalizes both the estimates on real-valued polynomials and on sums of independent random matrices.
We prove that with high probability over the choice of a random graph $G$ from the ErdH{o}s-Renyi distribution $G(n,1/2)$, a natural $n^{O(varepsilon^2 log n)}$-time, degree $O(varepsilon^2 log n)$ sum-of-squares semidefinite program cannot refute th e existence of a valid $k$-coloring of $G$ for $k = n^{1/2 +varepsilon}$. Our result implies that the refutation guarantee of the basic semidefinite program (a close variant of the Lovasz theta function) cannot be appreciably improved by a natural $o(log n)$-degree sum-of-squares strengthening, and this is tight up to a $n^{o(1)}$ slack in $k$. To the best of our knowledge, this is the first lower bound for coloring $G(n,1/2)$ for even a single round strengthening of the basic SDP in any SDP hierarchy. Our proof relies on a new variant of instance-preserving non-pointwise complete reduction within SoS from coloring a graph to finding large independent sets in it. Our proof is (perhaps surprisingly) short, simple and does not require complicated spectral norm bounds on random matrices with dependent entries that have been otherwise necessary in the proofs of many similar results [BHK+16, HKP+17, KB19, GJJ+20, MRX20]. Our result formally holds for a constraint system where vertices are allowed to belong to multiple color classes; we leave the extension to the formally stronger formulation of coloring, where vertices must belong to unique colors classes, as an outstanding open problem.
Given a large data matrix $Ainmathbb{R}^{ntimes n}$, we consider the problem of determining whether its entries are i.i.d. with some known marginal distribution $A_{ij}sim P_0$, or instead $A$ contains a principal submatrix $A_{{sf Q},{sf Q}}$ whose entries have marginal distribution $A_{ij}sim P_1 eq P_0$. As a special case, the hidden (or planted) clique problem requires to find a planted clique in an otherwise uniformly random graph. Assuming unbounded computational resources, this hypothesis testing problem is statistically solvable provided $|{sf Q}|ge C log n$ for a suitable constant $C$. However, despite substantial effort, no polynomial time algorithm is known that succeeds with high probability when $|{sf Q}| = o(sqrt{n})$. Recently Meka and Wigderson cite{meka2013association}, proposed a method to establish lower bounds within the Sum of Squares (SOS) semidefinite hierarchy. Here we consider the degree-$4$ SOS relaxation, and study the construction of cite{meka2013association} to prove that SOS fails unless $kge C, n^{1/3}/log n$. An argument presented by Barak implies that this lower bound cannot be substantially improved unless the witness construction is changed in the proof. Our proof uses the moments method to bound the spectrum of a certain random association scheme, i.e. a symmetric random matrix whose rows and columns are indexed by the edges of an Erdos-Renyi random graph.
The problem of finding large cliques in random graphs and its planted variant, where one wants to recover a clique of size $omega gg log{(n)}$ added to an Erdos-Renyi graph $G sim G(n,frac{1}{2})$, have been intensely studied. Nevertheless, existing polynomial time algorithms can only recover planted cliques of size $omega = Omega(sqrt{n})$. By contrast, information theoretically, one can recover planted cliques so long as $omega gg log{(n)}$. In this work, we continue the investigation of algorithms from the sum of squares hierarchy for solving the planted clique problem begun by Meka, Potechin, and Wigderson (MPW, 2015) and Deshpande and Montanari (DM,2015). Our main results improve upon both these previous works by showing: 1. Degree four SoS does not recover the planted clique unless $omega gg sqrt n poly log n$, improving upon the bound $omega gg n^{1/3}$ due to DM. A similar result was obtained independently by Raghavendra and Schramm (2015). 2. For $2 < d = o(sqrt{log{(n)}})$, degree $2d$ SoS does not recover the planted clique unless $omega gg n^{1/(d + 1)} /(2^d poly log n)$, improving upon the bound due to MPW. Our proof for the second result is based on a fine spectral analysis of the certificate used in the prior works MPW,DM and Feige and Krauthgamer (2003) by decomposing it along an appropriately chosen basis. Along the way, we develop combinatorial tools to analyze the spectrum of random matrices with dependent entries and to understand the symmetries in the eigenspaces of the set symmetric matrices inspired by work of Grigoriev (2001). An argument of Kelner shows that the first result cannot be proved using the same certificate. Rather, our proof involves constructing and analyzing a new certificate that yields the nearly tight lower bound by correcting the certificate of previous works.
We prove that for every $epsilon>0$ and predicate $P:{0,1}^krightarrow {0,1}$ that supports a pairwise independent distribution, there exists an instance $mathcal{I}$ of the $mathsf{Max}P$ constraint satisfaction problem on $n$ variables such that no assignment can satisfy more than a $tfrac{|P^{-1}(1)|}{2^k}+epsilon$ fraction of $mathcal{I}$s constraints but the degree $Omega(n)$ Sum of Squares semidefinite programming hierarchy cannot certify that $mathcal{I}$ is unsatisfiable. Similar results were previously only known for weaker hierarchies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا