ﻻ يوجد ملخص باللغة العربية
We prove that with high probability over the choice of a random graph $G$ from the ErdH{o}s-Renyi distribution $G(n,1/2)$, the $n^{O(d)}$-time degree $d$ Sum-of-Squares semidefinite programming relaxation for the clique problem will give a value of at least $n^{1/2-c(d/log n)^{1/2}}$ for some constant $c>0$. This yields a nearly tight $n^{1/2 - o(1)}$ bound on the value of this program for any degree $d = o(log n)$. Moreover we introduce a new framework that we call emph{pseudo-calibration} to construct Sum of Squares lower bounds. This framework is inspired by taking a computational analog of Bayesian probability theory. It yields a general recipe for constructing good pseudo-distributions (i.e., dual certificates for the Sum-of-Squares semidefinite program), and sheds further light on the ways in which this hierarchy differs from others.
Finding cliques in random graphs and the closely related planted clique variant, where a clique of size t is planted in a random G(n,1/2) graph, have been the focus of substantial study in algorithm design. Despite much effort, the best known polynom
We prove that with high probability over the choice of a random graph $G$ from the ErdH{o}s-Renyi distribution $G(n,1/2)$, a natural $n^{O(varepsilon^2 log n)}$-time, degree $O(varepsilon^2 log n)$ sum-of-squares semidefinite program cannot refute th
Given a large data matrix $Ainmathbb{R}^{ntimes n}$, we consider the problem of determining whether its entries are i.i.d. with some known marginal distribution $A_{ij}sim P_0$, or instead $A$ contains a principal submatrix $A_{{sf Q},{sf Q}}$ whose
The problem of finding large cliques in random graphs and its planted variant, where one wants to recover a clique of size $omega gg log{(n)}$ added to an Erdos-Renyi graph $G sim G(n,frac{1}{2})$, have been intensely studied. Nevertheless, existing
We prove that for every $epsilon>0$ and predicate $P:{0,1}^krightarrow {0,1}$ that supports a pairwise independent distribution, there exists an instance $mathcal{I}$ of the $mathsf{Max}P$ constraint satisfaction problem on $n$ variables such that no