ﻻ يوجد ملخص باللغة العربية
Recent studies on human mobility show that human movements are not random and tend to be clustered. In this connection, the movements of Twitter users captured by geo-located tweets were found to follow similar patterns, where a few geographic locations dominate the tweeting activity of individual users. However, little is known about the semantics (landuse types) and temporal tweeting behavior at those frequently-visited locations. Furthermore, it is generally assumed that the top two visited locations for most of the users are home and work locales (Hypothesis A) and people tend to tweet at their top locations during a particular time of the day (Hypothesis B). In this paper, we tested these two frequently cited hypotheses by examining the tweeting patterns of more than 164,000 unique Twitter users whom were residents of the city of Chicago during 2014. We extracted landuse attributes for each geo-located tweet from the detailed inventory of the Chicago Metropolitan Agency for Planning. Top-visited locations were identified by clustering semantic enriched tweets using a DBSCAN algorithm. Our results showed that although the top two locations are likely to be residential and occupational/educational, a portion of the users deviated from this case, suggesting that the first hypothesis oversimplify real-world situations. However, our observations indicated that people tweet at specific times and these temporal signatures are dependent on landuse types. We further discuss the implication of confounding variables, such as clustering algorithm parameters and relative accuracy of tweet coordinates, which are critical factors in any experimental design involving Twitter data.
The problem of ideology detection is to study the latent (political) placement for people, which is traditionally studied on politicians according to their voting behaviors. Recently, more and more studies begin to address the ideology detection prob
Hateful speech in Online Social Networks (OSNs) is a key challenge for companies and governments, as it impacts users and advertisers, and as several countries have strict legislation against the practice. This has motivated work on detecting and cha
The global public sphere has changed dramatically over the past decades: a significant part of public discourse now takes place on algorithmically driven platforms owned by a handful of private companies. Despite its growing importance, there is scan
The Covid-19 pandemic has had a deep impact on the lives of the entire world population, inducing a participated societal debate. As in other contexts, the debate has been the subject of several d/misinformation campaigns; in a quite unprecedented fa
Events detected from social media streams often include early signs of accidents, crimes or disasters. Therefore, they can be used by related parties for timely and efficient response. Although significant progress has been made on event detection fr