ﻻ يوجد ملخص باللغة العربية
Hateful speech in Online Social Networks (OSNs) is a key challenge for companies and governments, as it impacts users and advertisers, and as several countries have strict legislation against the practice. This has motivated work on detecting and characterizing the phenomenon in tweets, social media posts and comments. However, these approaches face several shortcomings due to the noisiness of OSN data, the sparsity of the phenomenon, and the subjectivity of the definition of hate speech. This works presents a user-centric view of hate speech, paving the way for better detection methods and understanding. We collect a Twitter dataset of $100,386$ users along with up to $200$ tweets from their timelines with a random-walk-based crawler on the retweet graph, and select a subsample of $4,972$ to be manually annotated as hateful or not through crowdsourcing. We examine the difference between user activity patterns, the content disseminated between hateful and normal users, and network centrality measurements in the sampled graph. Our results show that hateful users have more recent account creation dates, and more statuses, and followees per day. Additionally, they favorite more tweets, tweet in shorter intervals and are more central in the retweet network, contradicting the lone wolf stereotype often associated with such behavior. Hateful users are more negative, more profane, and use less words associated with topics such as hate, terrorism, violence and anger. We also identify similarities between hateful/normal users and their 1-neighborhood, suggesting strong homophily.
Most current approaches to characterize and detect hate speech focus on textit{content} posted in Online Social Networks. They face shortcomings to collect and annotate hateful speech due to the incompleteness and noisiness of OSN text and the subjec
We investigate predictors of anti-Asian hate among Twitter users throughout COVID-19. With the rise of xenophobia and polarization that has accompanied widespread social media usage in many nations, online hate has become a major social issue, attrac
Online hate is a growing concern on many social media platforms and other sites. To combat it, technology companies are increasingly identifying and sanctioning `hateful users rather than simply moderating hateful content. Yet, most research in onlin
The coronavirus (COVID-19) pandemic has significantly altered our lifestyles as we resort to minimize the spread through preventive measures such as social distancing and quarantine. An increasingly worrying aspect is the gap between the exponential
The ongoing Coronavirus (COVID-19) pandemic highlights the inter-connectedness of our present-day globalized world. With social distancing policies in place, virtual communication has become an important source of (mis)information. As increasing numb