ﻻ يوجد ملخص باللغة العربية
Events detected from social media streams often include early signs of accidents, crimes or disasters. Therefore, they can be used by related parties for timely and efficient response. Although significant progress has been made on event detection from tweet streams, most existing methods have not considered the posted images in tweets, which provide richer information than the text, and potentially can be a reliable indicator of whether an event occurs or not. In this paper, we design an event detection algorithm that combines textual, statistical and image information, following an unsupervised machine learning approach. Specifically, the algorithm starts with semantic and statistical analyses to obtain a list of tweet clusters, each of which corresponds to an event candidate, and then performs image analysis to separate events from non-events---a convolutional autoencoder is trained for each cluster as an anomaly detector, where a part of the images are used as the training data and the remaining images are used as the test instances. Our experiments on multiple datasets verify that when an event occurs, the mean reconstruction errors of the training and test images are much closer, compared with the case where the candidate is a non-event cluster. Based on this finding, the algorithm rejects a candidate if the difference is larger than a threshold. Experimental results over millions of tweets demonstrate that this image analysis enhanced approach can significantly increase the precision with minimum impact on the recall.
A common goal in network modeling is to uncover the latent community structure present among nodes. For many real-world networks, observed connections consist of events arriving as streams, which are then aggregated to form edges, ignoring the tempor
Geo-tagged tweets can potentially help with sensing the interaction of people with their surrounding environment. Based on this hypothesis, this paper makes use of geotagged tweets in order to ascertain various land uses with a broader goal to help w
Camera geo-localization from a monocular video is a fundamental task for video analysis and autonomous navigation. Although 3D reconstruction is a key technique to obtain camera poses, monocular 3D reconstruction in a large environment tends to resul
Recent studies on human mobility show that human movements are not random and tend to be clustered. In this connection, the movements of Twitter users captured by geo-located tweets were found to follow similar patterns, where a few geographic locati
Tweet classification has attracted considerable attention recently. Most of the existing work on tweet classification focuses on topic classification, which classifies tweets into several predefined categories, and sentiment classification, which cla