ترغب بنشر مسار تعليمي؟ اضغط هنا

Successive cohorts of Twitter users show increasing activity and shrinking content horizons

158   0   0.0 ( 0 )
 نشر من قبل Frederik Wolf
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The global public sphere has changed dramatically over the past decades: a significant part of public discourse now takes place on algorithmically driven platforms owned by a handful of private companies. Despite its growing importance, there is scant large-scale academic research on the long-term evolution of user behaviour on these platforms, because the data are often proprietary to the platforms. Here, we evaluate the individual behaviour of 600,000 Twitter users between 2012 and 2019 and find empirical evidence for an acceleration of the way Twitter is used on an individual level. This manifests itself in the fact that cohorts of Twitter users behave differently depending on when they joined the platform. Behaviour within a cohort is relatively consistent over time and characterised by strong internal interactions, but over time behaviour from cohort to cohort shifts towards increased activity. Specifically, we measure this in terms of more tweets per user over time, denser interactions with others via retweets, and shorter content horizons, expressed as an individuals decaying autocorrelation of topics over time. Our observations are explained by a growing proportion of active users who not only tweet more actively but also elicit more retweets. These behaviours suggest a collective contribution to an increased flow of information through each cohorts news feed -- an increase that potentially depletes available collective attention over time. Our findings complement recent, empirical work on social acceleration, which has been largely agnostic about individual user activity.



قيم البحث

اقرأ أيضاً

Social Media offer a vast amount of geo-located and time-stamped textual content directly generated by people. This information can be analysed to obtain insights about the general state of a large population of users and to address scientific questi ons from a diversity of disciplines. In this work, we estimate temporal patterns of mood variation through the use of emotionally loaded words contained in Twitter messages, possibly reflecting underlying circadian and seasonal rhythms in the mood of the users. We present a method for computing mood scores from text using affective word taxonomies, and apply it to millions of tweets collected in the United Kingdom during the seasons of summer and winter. Our analysis results in the detection of strong and statistically significant circadian patterns for all the investigated mood types. Seasonal variation does not seem to register any important divergence in the signals, but a periodic oscillation within a 24-hour period is identified for each mood type. The main common characteristic for all emotions is their mid-morning peak, however their mood score patterns differ in the evenings.
We construct the Google matrix of the entire Twitter network, dated by July 2009, and analyze its spectrum and eigenstate properties including the PageRank and CheiRank vectors and 2DRanking of all nodes. Our studies show much stronger inter-connecti vity between top PageRank nodes for the Twitter network compared to the networks of Wikipedia and British Universities studied previously. Our analysis allows to locate the top Twitter users which control the information flow on the network. We argue that this small fraction of the whole number of users, which can be viewed as the social network elite, plays the dominant role in the process of opinion formation on the network.
On social media algorithms for content promotion, accounting for users preferences, might limit the exposure to unsolicited contents. In this work, we study how the same contents (videos) are consumed on different platforms -- i.e. Facebook and YouTu be -- over a sample of $12M$ of users. Our findings show that the same content lead to the formation of echo chambers, irrespective of the online social network and thus of the algorithm for content promotion. Finally, we show that the users commenting patterns are accurate early predictors for the formation of echo-chambers.
The problem of ideology detection is to study the latent (political) placement for people, which is traditionally studied on politicians according to their voting behaviors. Recently, more and more studies begin to address the ideology detection prob lem for ordinary users based on their online behaviors that can be captured by social media, e.g., Twitter. As far as we are concerned, however, the vast majority of the existing methods on ideology detection on social media have oversimplified the problem as a binary classification problem (i.e., liberal vs. conservative). Moreover, though social links can play a critical role in deciding ones ideology, most of the existing work ignores the heterogeneous types of links in social media. In this paper we propose to detect emph{numerical} ideology positions for Twitter users, according to their emph{follow}, emph{mention}, and emph{retweet} links to a selected set of politicians. A unified probabilistic model is proposed that can (1) explain the reasons why links are built among people in terms of their ideology, (2) integrate heterogeneous types of links together in determining peoples ideology, and (3) automatically learn the quality of each type of links in deciding ones ideology. Experiments have demonstrated the advantages of our model in terms of both ranking and political leaning classification accuracy. It is shown that (1) using multiple types of links is better than using any single type of links alone to determine ones ideology, and (2) our model is even more superior than baselines when dealing with people that are sparsely linked in one type of links. We also show that the detected ideology for Twitter users aligns with our intuition quite well.
As individuals communicate, their exchanges form a dynamic network. We demonstrate, using time series analysis of communication in three online settings, that network structure alone can be highly revealing of the diversity and novelty of the informa tion being communicated. Our approach uses both standard and novel network metrics to characterize how unexpected a network configuration is, and to capture a networks ability to conduct information. We find that networks with a higher conductance in link structure exhibit higher information entropy, while unexpected network configurations can be tied to information novelty. We use a simulation model to explain the observed correspondence between the evolution of a networks structure and the information it carries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا