ﻻ يوجد ملخص باللغة العربية
We answer two open questions about the model theory of valued differential fields introduced by Scanlon. We show that they eliminate imaginaries in the geometric language introduced by Haskell, Hrushovski and Macpherson and that they have the invariant extension property. These two result follow from an abstract criterion for the density of definable types in enrichments of algebraically closed valued fields. Finally, we show that this theory is metastable.
The text is based on notes from a class entitled {em Model Theory of Berkovich Spaces}, given at the Hebrew University in the fall term of 2009, and retains the flavor of class notes. It includes an exposition of material from cite{hhmcrelle}, cite{h
The following strong form of density of definable types is introduced for theories T admitting a fibered dimension function d: given a model M of T and a definable subset X of M^n, there is a definable type p in X, definable over a code for X and of
Answering a question of P. Bankston, we show that the pseudoarc is a co-existentially closed continuum. We also show that $C(X)$, for $X$ a nondegenerate continuum, can never have quantifier elimination, answering a question of the the first and third named authors and Farah and Kirchberg.
In this paper we study elimination of imaginaries in some classes of henselian valued fields of equicharacteristic zero and residue field algebraically closed. The results are sensitive to the complexity of the value group. We focus first in the case
We introduce a class of theories called metastable, including the theory of algebraically closed valued fields (ACVF) as a motivating example. The key local notion is that of definable types dominated by their stable part. A theory is metastable (ove