ﻻ يوجد ملخص باللغة العربية
The text is based on notes from a class entitled {em Model Theory of Berkovich Spaces}, given at the Hebrew University in the fall term of 2009, and retains the flavor of class notes. It includes an exposition of material from cite{hhmcrelle}, cite{hhm} and cite{HL}, regarding definable types in the model completion of the theory of valued fields, and the classification of imaginary sorts. The latter is given a new proof, based on definable types rather than invariant types, and on the notion of {em generic reparametrization}. I also try to bring out the relation to the geometry of cite{HL} - stably dominated definable types as the model theoretic incarnation of a Berkovich point.
We answer two open questions about the model theory of valued differential fields introduced by Scanlon. We show that they eliminate imaginaries in the geometric language introduced by Haskell, Hrushovski and Macpherson and that they have the invaria
The following strong form of density of definable types is introduced for theories T admitting a fibered dimension function d: given a model M of T and a definable subset X of M^n, there is a definable type p in X, definable over a code for X and of
In this paper we study elimination of imaginaries in some classes of henselian valued fields of equicharacteristic zero and residue field algebraically closed. The results are sensitive to the complexity of the value group. We focus first in the case
For certain theories of existentially closed topological differential fields, we show that there is a strong relationship between $mathcal Lcup{D}$-definable sets and their $mathcal L$-reducts, where $mathcal L$ is a relational expansion of the field
We continue the study of a class of topological $mathcal{L}$-fields endowed with a generic derivation $delta$, focussing on describing definable groups. We show that one can associate to an $mathcal{L}_{delta}$ definable group a type $mathcal{L}$-def