ﻻ يوجد ملخص باللغة العربية
In this paper we study elimination of imaginaries in some classes of henselian valued fields of equicharacteristic zero and residue field algebraically closed. The results are sensitive to the complexity of the value group. We focus first in the case where the ordered abelian group has finite spines, and then prove a better result for the dp-minimal case. An ordered abelian with finite spines weakly eliminates imaginaries once we add sorts for the quotient groups $Gamma/ Delta$ for each definable convex subgroup $Delta$, and sorts for the quotient groups $Gamma/ Delta+ lGamma$ where $Delta$ is a definable convex subgroup and $l in mathbb{N}_{geq 2}$. We refer to these sorts as the quotient sorts. We prove the following two theorems: Theorem: Let $K$ be a valued field of equicharacteristic zero, residue field algebraically closed and value group with finite spines. Then $K$ admits weak elimination of imaginaries once we add codes for all the definable $mathcal{O}$-submodules of $K^{n}$ for each $n in mathbb{N}$, and the quotient sorts for the value group. Theorem: Let $K$ be a henselian valued field of equicharacteristic zero, residue field algebraically closed and dp-minimal value group. Then $K$ eliminates imaginaries once we add codes for all the definable $mathcal{O}$-submodules of $K^{n}$ for each $n in mathbb{N}$, the quotient sorts for the value group and constants to distinguish representatives of the cosets of $Delta+lGamma$ in $Gamma$, where $Delta$ is a convex definable subgroup and $l in mathbb{N}_{geq 2}$.
In this paper we study elimination of imaginaries in some classes of pure ordered abelian groups. For the class of ordered abelian groups with bounded regular rank (equivalently with finite spines) we obtain weak elimination of imaginaries once we ad
The text is based on notes from a class entitled {em Model Theory of Berkovich Spaces}, given at the Hebrew University in the fall term of 2009, and retains the flavor of class notes. It includes an exposition of material from cite{hhmcrelle}, cite{h
We answer two open questions about the model theory of valued differential fields introduced by Scanlon. We show that they eliminate imaginaries in the geometric language introduced by Haskell, Hrushovski and Macpherson and that they have the invaria
We study finite imaginaries in certain valued fields, and prove a conjecture of Cluckers and Denef.
The only C*-algebras that admit elimination of quantifiers in continuous logic are $mathbb{C}, mathbb{C}^2$, $C($Cantor space$)$ and $M_2(mathbb{C})$. We also prove that the theory of C*-algebras does not have model companion and show that the theory