ﻻ يوجد ملخص باللغة العربية
We introduce a class of theories called metastable, including the theory of algebraically closed valued fields (ACVF) as a motivating example. The key local notion is that of definable types dominated by their stable part. A theory is metastable (over a sort $Gamma$) if every type over a sufficiently rich base structure can be viewed as part of a $Gamma$-parametrized family of stably dominated types. We initiate a study of definable groups in metastable theories of finite rank. Groups with a stably dominated generic type are shown to have a canonical stable quotient. Abelian groups are shown to be decomposable into a part coming from $Gamma$, and a definable direct limit system of groups with stably dominated generic. In the case of ACVF, among definable subgroups of affine algebraic groups, we characterize the groups with stably dominated generics in terms of group schemes over the valuation ring. Finally, we classify all fields definable in ACVF.
We study algebraic, combinatorial and topological properties of the set of preorders on a group, and the set of valuations on a field. We show strong analogies between these two kinds of sets and develop a dictionary for these ones. Among the results
The text is based on notes from a class entitled {em Model Theory of Berkovich Spaces}, given at the Hebrew University in the fall term of 2009, and retains the flavor of class notes. It includes an exposition of material from cite{hhmcrelle}, cite{h
Regular groups and fields are common generalizations of minimal and quasi-minimal groups and fields, so the conjectures that minimal or quasi-minimal fields are algebraically closed have their common generalization to the conjecture that each regular
We answer two open questions about the model theory of valued differential fields introduced by Scanlon. We show that they eliminate imaginaries in the geometric language introduced by Haskell, Hrushovski and Macpherson and that they have the invaria
For certain theories of existentially closed topological differential fields, we show that there is a strong relationship between $mathcal Lcup{D}$-definable sets and their $mathcal L$-reducts, where $mathcal L$ is a relational expansion of the field