ﻻ يوجد ملخص باللغة العربية
Several superconducting transition temperatures in the range of 30-40 K were reported in the recently discovered intercalated FeSe sytem (A1-xFe2-ySe2, A = K, Rb, Cs, Tl). Although the superconducting phases were not yet conclusively decided, more than one magnetic phase with particular orders of iron vacancy and/or potassium vacancy were identified, and some were argued to be the parent phase. Here we show the discovery of the presence and ordering of iron vacancy in nonintercalated FeSe (PbO-type tetragonal {beta}-Fe1-xSe). Three types of iron-vacancy order were found through analytical electron microscopy, and one was identified to be nonsuperconducting and magnetic at low temperature. This discovery suggests that the rich-phases found in A1-xFe2-ySe2 are not exclusive in Fe-Se related superconductors. In addition, the magnetic {beta}-Fe1-xSe phases with particular iron-vacancy orders are more likely to be the parent phase of FeSe superconducting system, instead of the previously assigned {beta}-Fe1+{delta}Te.
Here we establish a more complete phase diagram for FeSe system, based on experimental results of nonstoichiometric Fe1-xSe single crystals that we have developed recently, as well as nearly stoichiometric FeSe single crystals. The electronic correla
The recent discovery of superconductivity with relatively high transition temperature Tc in the layered iron-based quaternary oxypnictides La[ O1-xFx] FeAs was a real surprise. The excitement generated can be seen by the number of subsequent works pu
The electronic and superconducting properties of Fe1-xSe single-crystal flakes grown hydrothermally are studied by the transport measurements under zero and high magnetic fields up to 38.5 T. The results contrast sharply with those previously reporte
Experimental evidences from transport, magnetic, and magneto-optical (MO) image measurements confirmed that arsenic (As) vapor annealing was another effective way to induce bulk superconductivity with isotropic, large, and homogenous superconducting
We studied the electrical transport on $beta$-Fe$_{4+delta}$Se$_{5}$ single-crystal nanowires, exhibiting $sqrt{5}timessqrt{5}$ Fe-vacancy order and mixed valence of Fe. We observed a first-order metal-insulator transition of the transition temperatu