ﻻ يوجد ملخص باللغة العربية
The recent discovery of superconductivity with relatively high transition temperature Tc in the layered iron-based quaternary oxypnictides La[ O1-xFx] FeAs was a real surprise. The excitement generated can be seen by the number of subsequent works published within a very short period of time. Although there exists superconductivity in alloy that contains Fe element, LaOMPn (with M= Fe, Ni; and Pn=P and As) is the first system where Fe-element plays the key role to the occurrence of superconductivity. LaOMPn has a layered crystal structure with an Fe-based plane. It is quite natural to ask whether there exists other Fe based planar compounds that exhibit superconductivity. Here we report the observation of superconductivity with zero resistance transition temperature at 8K in the PbO-type alpha-FeSe compound. Although FeSe has been studied quite extensively, a key observation is that the clean superconducting phase exists only in those samples prepared with intentional Se deficiency. What is truly striking, is that this compound has the same, perhaps simpler, planar crystal sublattice as the layered oxypnictides. Furthermore, FeSe is, compared with LaOFeAs, much easier to handle and fabricate. In view of the abundance of compounds with PbO type structure, this result opens a new route to the search for unconventional superconductors.
We provide a band structure with low-energy properties consistent with recent photoemission and quantum oscillations measurements on FeSe, assuming mean-field like s and/or d-wave orbital ordering at the structural transition. We show how the resulti
One of central issues in iron-based superconductors is the role of structural change to the superconducting transition temperature (T_c). It was found in FeSe that the lattice strain leads to a drastic increase in T_c, accompanied by suppression of n
The discovery of high-temperature (Tc) superconductivity in monolayer FeSe on SrTiO3 raised a fundamental question whether high Tc is commonly realized in monolayer iron-based superconductors. Tetragonal FeS is a key material to resolve this issue be
Several superconducting transition temperatures in the range of 30-40 K were reported in the recently discovered intercalated FeSe sytem (A1-xFe2-ySe2, A = K, Rb, Cs, Tl). Although the superconducting phases were not yet conclusively decided, more th
FeSe is a fascinating superconducting material at the frontier of research in condensed matter physics. Here we provide an overview on the current understanding of the electronic structure of FeSe, focusing in particular on its low energy electronic