ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum graph walks II: Quantum walks on graph coverings

224   0   0.0 ( 0 )
 نشر من قبل Iwao Sato
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a new determinant expression for the characteristic polynomial of the bond scattering matrix of a quantum graph G. Also, we give a decomposition formula for the characteristic polynomial of the bond scattering matrix of a regular covering of G. Furthermore, we define an L-function of G, and give a determinant expression of it. As a corollary, we express the characteristic polynomial of the bond scattering matrix of a regular covering of G by means of its L-functions. As an application, we introduce three types of quantum graph walks, and treat their relation.



قيم البحث

اقرأ أيضاً

We clarify that coined quantum walk is determined by only the choice of local quantum coins. To do so, we characterize coined quantum walks on graph by disjoint Euler circles with respect to symmetric arcs. In this paper, we introduce a new class of coined quantum walk by a special choice of quantum coins determined by corresponding quantum graph, called quantum graph walk. We show that a stationary state of quantum graph walk describes the eigenfunction of the quantum graph.
In this paper, we consider the quantum walk on $mathbb{Z}$ with attachment of one-length path periodically. This small modification to $mathbb{Z}$ provides localization of the quantum walk. The eigenspace causing this localization is generated by fin ite length round trip paths. We find that the localization is due to the eigenvalues of an underlying random walk. Moreover we find that the transience of the underlying random walk provides a slow down of the pseudo velocity of the induced quantum walk and a different limit distribution from the Konno distribution.
We study random walks on the giant component of the ErdH{o}s-Renyi random graph ${cal G}(n,p)$ where $p=lambda/n$ for $lambda>1$ fixed. The mixing time from a worst starting point was shown by Fountoulakis and Reed, and independently by Benjamini, Ko zma and Wormald, to have order $log^2 n$. We prove that starting from a uniform vertex (equivalently, from a fixed vertex conditioned to belong to the giant) both accelerates mixing to $O(log n)$ and concentrates it (the cutoff phenomenon occurs): the typical mixing is at $( u {bf d})^{-1}log n pm (log n)^{1/2+o(1)}$, where $ u$ and ${bf d}$ are the speed of random walk and dimension of harmonic measure on a ${rm Poisson}(lambda)$-Galton-Watson tree. Analogous results are given for graphs with prescribed degree sequences, where cutoff is shown both for the simple and for the non-backtracking random walk.
We study large time behavior of quantum walks (QW) with self-dependent coin. In particular, we show scattering and derive the reproducing formula for inverse scattering in the weak nonlinear regime. The proof is based on space-time estimate of (linea r) QW such as Strichartz estimate. Such argument is standard in the study of nonlinear Schrodinger equations but it seems to be the first time to be applied to QW. We also numerically study the dynamics of QW and observe soliton like solutions.
135 - Tong Wu , J. A. Izaac , Zi-Xi Li 2019
Quantum walks (QW) are of crucial importance in the development of quantum information processing algorithms. Recently, several quantum algorithms have been proposed to implement network analysis, in particular to rank the centrality of nodes in netw orks represented by graphs. Employing QW in centrality ranking is advantageous comparing to certain widely used classical algorithms (e.g. PageRank) because QW approach can lift the vertex rank degeneracy in certain graphs. However, it is challenging to implement a directed graph via QW, since it corresponds to a non-Hermitian Hamiltonian and thus cannot be accomplished by conventional QW. Here we report the realizations of centrality rankings of both a three-vertex and four-vertex directed graphs with parity-time (PT) symmetric quantum walks. To achieve this, we use high-dimensional photonic quantum states, optical circuitries consisting of multiple concatenated interferometers and dimension dependent loss. Importantly, we demonstrate the advantage of QW approach experimentally by breaking the vertex rank degeneracy in a four-vertex graph. Our work shows that PT-symmetric quantum walks may be useful for realizing advanced algorithm in a quantum network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا