ﻻ يوجد ملخص باللغة العربية
We study random walks on the giant component of the ErdH{o}s-Renyi random graph ${cal G}(n,p)$ where $p=lambda/n$ for $lambda>1$ fixed. The mixing time from a worst starting point was shown by Fountoulakis and Reed, and independently by Benjamini, Kozma and Wormald, to have order $log^2 n$. We prove that starting from a uniform vertex (equivalently, from a fixed vertex conditioned to belong to the giant) both accelerates mixing to $O(log n)$ and concentrates it (the cutoff phenomenon occurs): the typical mixing is at $( u {bf d})^{-1}log n pm (log n)^{1/2+o(1)}$, where $ u$ and ${bf d}$ are the speed of random walk and dimension of harmonic measure on a ${rm Poisson}(lambda)$-Galton-Watson tree. Analogous results are given for graphs with prescribed degree sequences, where cutoff is shown both for the simple and for the non-backtracking random walk.
Consider a system of coalescing random walks where each individual performs random walk over a finite graph G, or (more generally) evolves according to some reversible Markov chain generator Q. Let C be the first time at which all walkers have coales
In this paper we study height fluctuations of random lozenge tilings of polygonal domains on the triangular lattice through nonintersecting Bernoulli random walks. For a large class of polygons which have exactly one horizontal upper boundary edge, w
We prove a conjecture raised by the work of Diaconis and Shahshahani (1981) about the mixing time of random walks on the permutation group induced by a given conjugacy class. To do this we exploit a connection with coalescence and fragmentation proce
We study the evolution of a random walker on a conservative dynamic random environment composed of independent particles performing simple symmetric random walks, generalizing results of [16] to higher dimensions and more general transition kernels w
We consider a random walker in a dynamic random environment given by a system of independent simple symmetric random walks. We obtain ballisticity results under two types of perturbations: low particle density, and strong local drift on particles. Su