ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the quantum walk on $mathbb{Z}$ with attachment of one-length path periodically. This small modification to $mathbb{Z}$ provides localization of the quantum walk. The eigenspace causing this localization is generated by finite length round trip paths. We find that the localization is due to the eigenvalues of an underlying random walk. Moreover we find that the transience of the underlying random walk provides a slow down of the pseudo velocity of the induced quantum walk and a different limit distribution from the Konno distribution.
We consider the Grover walk on infinite trees from the view point of spectral analysis. From the previous works, infinite regular trees provide localization. In this paper, we give the complete characterization of the eigenspace of this Grover walk,
We give a new determinant expression for the characteristic polynomial of the bond scattering matrix of a quantum graph G. Also, we give a decomposition formula for the characteristic polynomial of the bond scattering matrix of a regular covering of
Quantum walks subject to decoherence generically suffer the loss of their genuine quantum feature, a quadratically faster spreading compared to classical random walks. This intuitive statement has been verified analytically for certain models and is
Given its importance to many other areas of physics, from condensed matter physics to thermodynamics, time-reversal symmetry has had relatively little influence on quantum information science. Here we develop a network-based picture of time-reversal
Although quantum walks exhibit peculiar properties that distinguish them from random walks, classical behavior can be recovered in the asymptotic limit by destroying the coherence of the pure state associated to the quantum system. Here I show that t