ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum graph walks I: mapping to quantum walks

173   0   0.0 ( 0 )
 نشر من قبل Etsuo Segawa
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We clarify that coined quantum walk is determined by only the choice of local quantum coins. To do so, we characterize coined quantum walks on graph by disjoint Euler circles with respect to symmetric arcs. In this paper, we introduce a new class of coined quantum walk by a special choice of quantum coins determined by corresponding quantum graph, called quantum graph walk. We show that a stationary state of quantum graph walk describes the eigenfunction of the quantum graph.



قيم البحث

اقرأ أيضاً

We give a new determinant expression for the characteristic polynomial of the bond scattering matrix of a quantum graph G. Also, we give a decomposition formula for the characteristic polynomial of the bond scattering matrix of a regular covering of G. Furthermore, we define an L-function of G, and give a determinant expression of it. As a corollary, we express the characteristic polynomial of the bond scattering matrix of a regular covering of G by means of its L-functions. As an application, we introduce three types of quantum graph walks, and treat their relation.
We connect the Grover walk with sinks to the Grover walk with tails. The survival probability of the Grover walk with sinks in the long time limit is characterized by the centered generalized eigenspace of the Grover walk with tails. The centered eig enspace of the Grover walk is the attractor eigenspace of the Grover walk with sinks. It is described by the persistent eigenspace of the underlying random walk whose support has no overlap to the boundaries of the graph and combinatorial flow in the graph theory.
151 - Chusei Kiumi , Kei Saito 2021
Localization is a characteristic phenomenon of space-inhomogeneous quantum walks in one dimension, where particles remain localized at their initial position. Eigenvectors of time evolution operators are deeply related to the amount of trapping. In t his paper, we introduce the analytical method for the eigenvalue problem using a transfer matrix to quantitatively evaluate localization by deriving the time-averaged limit distribution and reveal the condition of strong trapping.
76 - Chusei Kiumi , Kei Saito 2020
We study space-inhomogeneous quantum walks (QWs) on the integer lattice which we assign three different coin matrices to the positive part, the negative part, and the origin, respectively. We call them two-phase QWs with one defect. They cover one-de fect and two-phase QWs, which have been intensively researched. Localization is one of the most characteristic properties of QWs, and various types of two-phase QWs with one defect exhibit localization. Moreover, the existence of eigenvalues is deeply related to localization. In this paper, we obtain a necessary and sufficient condition for the existence of eigenvalues. Our analytical methods are mainly based on the transfer matrix, a useful tool to generate the generalized eigenfunctions. Furthermore, we explicitly derive eigenvalues for some classes of two-phase QWs with one defect, and illustrate the range of eigenvalues on unit circles with figures. Our results include some results in previous studies, e.g. Endo et al. (2020).
355 - Masaya Maeda , Akito Suzuki 2019
In this paper, we consider the continuous limit of a nonlinear quantum walk (NLQW) that incorporates a linear quantum walk as a special case. In particular, we rigorously prove that the walker (solution) of the NLQW on a lattice $delta mathbb Z$ unif ormly converges (in Sobolev space $H^s$) to the solution to a nonlinear Dirac equation (NLD) on a fixed time interval as $deltato 0$. Here, to compare the walker defined on $deltamathbb Z$ and the solution to the NLD defined on $mathbb R$, we use Shannon interpolation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا