ﻻ يوجد ملخص باللغة العربية
In a system of noisy self-propelled particles with interactions that favor directional alignment, collective motion will appear if the density of particles is beyond a critical density. Starting with a reduced model for collective motion, we determine how the critical density depends on the form of the initial perturbation. Specifically, we employ a renormalization-group improved perturbative method to analyze the model equations, and show analytically, up to first order in the perturbation parameter, how the critical density is modified by the strength of the initial angular perturbation in the system.
Micro-Electro Mechanical Systems (MEMS) are defined as very small structures that combine electrical and mechanical components on a common substrate. Here, the electrostatic-elastic case is considered, where an elastic membrane is allowed to deflect
The reduced 1D Poisson-Nernst-Planck (PNP) model of artificial nanopores in the presence of a permanent charge on the channel wall is studied. More specifically, we consider the limit where the channel length exceed much the Debye screening length an
In a system of noisy self-propelled particles with interactions that favor directional alignment, collective motion will appear if the density of particles increases beyond a certain threshold. In this paper, we argue that such a threshold may depend
We present a renormalization group (RG) analysis of a fermionic hot spot model of interacting electrons on the square lattice. We truncate the Fermi surface excitations to linearly dispersing quasiparticles in the vicinity of eight hot spots on the F
We develop a theoretical approach to ``spontaneous stochasticity in classical dynamical systems that are nearly singular and weakly perturbed by noise. This phenomenon is associated to a breakdown in uniqueness of solutions for fixed initial data and