ﻻ يوجد ملخص باللغة العربية
We present a renormalization group (RG) analysis of a fermionic hot spot model of interacting electrons on the square lattice. We truncate the Fermi surface excitations to linearly dispersing quasiparticles in the vicinity of eight hot spots on the Fermi surface, with each hot spot separated from another by the wavevector $(pi, pi)$. This motivated by the importance of these Fermi surface locations to the onset of antiferromagnetic order; however, we allow for all possible quartic interactions between the fermions, and also for all possible ordering instabilities. We compute the RG equations for our model, which depend on whether the hot spots are perfectly nested or not, and relate our results to earlier models. We also compute the RG flow of the relevant order parameters for both Hubbard and $J$, $V$ interactions, and present our results for the dominant instabilities in the nested and non-nested cases. In particular, we find that non-nested hot spots with $J$, $V$ interactions have competing singlet $d_{x^2-y^2}$ superconducting and $d$-form factor incommensurate density wave instabilities. We also investigate the enhancement of incommensurate density waves near experimentally observed wavevectors, and find dominant $d$-form factor enhancement for a range of couplings.
We present in this work an exact renormalization group (RG) treatment of a one-dimensional $p$-wave superconductor. The model proposed by Kitaev consists of a chain of spinless fermions with a $p$-wave gap. It is a paradigmatic model of great actual
We employ the weak-coupling renormalization group approach to study unconventional superconducting phases emerging in the extended, repulsive Hubbard model on paradigmatic two-dimensional lattices. Repulsive interactions usually lead to higher-angula
We present a detailed functional renormalization group analysis of spin-1/2 dipolar Heisenberg model on square lattice. This model is similar to the well known $J_1$-$J_2$ model and describes the pseudospin degrees of freedom of polar molecules confi
We present a study of the attractive Hubbard model based on the dynamical mean field theory (DMFT) combined with the numerical renormalization group (NRG). For this study the NRG method is extended to deal with self-consistent solutions of effective
Recent experimental advances in using strain engineering to significantly alter the band structure of moderately correlated systems offer opportunities and challenges to weak-coupling renormalization group (RG) analysis approaches for predicting supe