ترغب بنشر مسار تعليمي؟ اضغط هنا

A Renormalization Group Approach to Spontaneous Stochasticity

127   0   0.0 ( 0 )
 نشر من قبل Gregory L. Eyink
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a theoretical approach to ``spontaneous stochasticity in classical dynamical systems that are nearly singular and weakly perturbed by noise. This phenomenon is associated to a breakdown in uniqueness of solutions for fixed initial data and underlies many fundamental effects of turbulence (unpredictability, anomalous dissipation, enhanced mixing). Based upon analogy with statistical-mechanical critical points at zero temperature, we elaborate a renormalization group (RG) theory that determines the universal statistics obtained for sufficiently long times after the precise initial data are ``forgotten. We apply our RG method to solve exactly the ``minimal model of spontaneous stochasticity given by a 1D singular ODE. Generalizing prior results for the infinite-Reynolds limit of our model, we obtain the RG fixed points that characterize the spontaneous statistics in the near-singular, weak-noise limit, determine the exact domain of attraction of each fixed point, and derive the universal approach to the fixed points as a singular large-deviations scaling, distinct from that obtained by the standard saddle-point approximation to stochastic path-integrals in the zero-noise limit. We present also numerical simulation results that verify our analytical predictions, propose possible experimental realizations of the ``minimal model, and discuss more generally current empirical evidence for ubiquitous spontaneous stochasticity in Nature. Our RG method can be applied to more complex, realistic systems and some future applications are briefly outlined.



قيم البحث

اقرأ أيضاً

Renormalization group calculations are used to give exact solutions for rigidity percolation on hierarchical lattices. Algebraic scaling transformations for a simple example in two dimensions produce a transition of second order, with an unstable cri tical point and associated scaling laws. Values are provided for the order parameter exponent $beta = 0.0775$ associated with the spanning rigid cluster and also for $d u = 3.533$ which is associated with an anomalous lattice dimension $d$ and the divergence in the correlation length near the transition. In addition we argue that the number of floppy modes $F$ plays the role of a free energy and hence find the exponent $alpha$ and establish hyperscaling. The exact analytical procedures demonstrated on the chosen example readily generalize to wider classes of hierarchical lattice.
268 - N. Dupuis , K. Sengupta 2008
The non-perturbative renormalization-group approach is extended to lattice models, considering as an example a $phi^4$ theory defined on a $d$-dimensional hypercubic lattice. Within a simple approximation for the effective action, we solve the flow e quations and obtain the renormalized dispersion $eps(q)$ over the whole Brillouin zone of the reciprocal lattice. In the long-distance limit, where the lattice does not matter any more, we reproduce the usual flow equations of the continuum model. We show how the numerical solution of the flow equations can be simplified by expanding the dispersion in a finite number of circular harmonics.
A functional renormalization group approach to $d$-dimensional, $N$-component, non-collinear magnets is performed using various truncations of the effective action relevant to study their long distance behavior. With help of these truncations we stud y the existence of a stable fixed point for dimensions between $d= 2.8$ and $d=4$ for various values of $N$ focusing on the critical value $N_c(d)$ that, for a given dimension $d$, separates a first order region for $N<N_c(d)$ from a second order region for $N>N_c(d)$. Our approach concludes to the absence of stable fixed point in the physical - $N=2,3$ and $d=3$ - cases, in agreement with $epsilon=4-d$-expansion and in contradiction with previous perturbative approaches performed at fixed dimension and with recent approaches based on conformal bootstrap program.
We study the evolution of the probability density of ensembles of iterates of the logistic map that advance towards and finally remain at attractors of representative dynamical regimes. We consider the mirror families of superstable attractors along the period-doubling cascade, and of chaotic-band attractors along the inverse band-splitting cascade. We examine also their common aperiodic accumulation point. The iteration time progress of the densities of trajectories is determined via the action of the Frobenius-Perron (FP) operator. As a difference with the study of individual orbits, the analysis of ensembles of positions offers a viewpoint from which the nonlinear dynamical features of this iconic model can be better characterized in statistical-mechanical terms. The scaling of the densities along the considered families of attractors conforms to a renormalization-group (RG) structure, while their entropies are seen to attain extrema at the fixed points of the RG flows. Additionally, this entropy as a function of the map control parameter displays the characteristic features of an equation of state of a thermal system undergoing a second-order phase transition. We discuss our results.
234 - T. Machado , N. Dupuis 2010
We propose a modification of the non-perturbative renormalization-group (NPRG) which applies to lattice models. Contrary to the usual NPRG approach where the initial condition of the RG flow is the mean-field solution, the lattice NPRG uses the (loca l) limit of decoupled sites as the (initial) reference system. In the long-distance limit, it is equivalent to the usual NPRG formulation and therefore yields identical results for the critical properties. We discuss both a lattice field theory defined on a $d$-dimensional hypercubic lattice and classical spin systems. The simplest approximation, the local potential approximation, is sufficient to obtain the critical temperature and the magnetization of the 3D Ising, XY and Heisenberg models to an accuracy of the order of one percent. We show how the local potential approximation can be improved to include a non-zero anomalous dimension $eta$ and discuss the Berezinskii-Kosterlitz-Thouless transition of the 2D XY model on a square lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا