ﻻ يوجد ملخص باللغة العربية
Micro-Electro Mechanical Systems (MEMS) are defined as very small structures that combine electrical and mechanical components on a common substrate. Here, the electrostatic-elastic case is considered, where an elastic membrane is allowed to deflect above a ground plate under the action of an electric potential, whose strength is proportional to a parameter $lambda$. Such devices are commonly described by a parabolic partial differential equation that contains a singular nonlinear source term. The singularity in that term corresponds to the so-called touchdown phenomenon, where the membrane establishes contact with the ground plate. Touchdown is known to imply the non-existence of steady state solutions and blow-up of solutions in finite time. We study a recently proposed extension of that canonical model, where such singularities are avoided due to the introduction of a regularizing term involving a small regularization parameter $varepsilon$. Methods from dynamical systems and geometric singular perturbation theory, in particular the desingularization technique known as blow-up, allow for a precise description of steady-state solutions of the regularized model, as well as for a detailed resolution of the resulting bifurcation diagram. The interplay between the two main model parameters $varepsilon$ and $lambda$ is emphasized; in particular, the focus is on the singular limit as both parameters tend to zero.
We are concerned with polynomial ordinary differential systems that arise from modelling chemical reaction networks. For such systems, which may be of high dimension and may depend on many parameters, it is frequently of interest to obtain a reductio
In a system of noisy self-propelled particles with interactions that favor directional alignment, collective motion will appear if the density of particles is beyond a critical density. Starting with a reduced model for collective motion, we determin
We study the singular perturbation of an elastic energy with a singular weight. The minimization of this energy results in a multi-scale pattern formation. We derive an energy scaling law in terms of the perturbation parameter and prove that, althoug
The quasi-steady-state approximation is widely used to develop simplified deterministic or stochastic models of enzyme catalyzed reactions. In deterministic models, the quasi-steady-state approximation can be mathematically justified from singular pe
For a generic vector field robustly without horseshoes, and an aperiodic chain recurrent class with singularities whose saddle values have different signs, the extended rescaled Poincare map is associated with a central model. We estimate such centra