ﻻ يوجد ملخص باللغة العربية
We investigate numerically kink collisions in a $1+1$ dimensional scalar field theory with multiple vacua. The domain wall model we are interested in involves two scalar fields and a potential term built from an asymmetric double well and (double) sine-Gordon potential together with an interaction term. Depending on the initial kink setup and impact velocities, the model allows for a wide range of scattering behaviours. Kinks can repel each other, annihilate, form true or false domain walls and reflect off each other.
Using the holographic correspondence as a tool, we study the dynamics of first-order phase transitions in strongly coupled gauge theories at finite temperature. Considering an evolution from the large to the small temperature phase, we compute the nu
In this paper, kink scattering in the dimensional reduction of the bosonic sector of a one-parameter family of generalized Wess-Zumino models with three vacuum points is discussed. The value of the model parameter determines the specific location of
We study bubble universe collisions in the ultrarelativistic limit with the new feature of allowing for nontrivial curvature in field space. We establish a simple geometrical interpretation of such collisions in terms of a double family of field prof
Sine-Gordon kinks are a much studied integrable system that possesses multi-soliton solutions. Recent studies on sine-Gordon kinks with space-dependent square-well-type potentials have revealed interesting dynamics of a single kink interacting with w
In this paper the kink scattering in a two-component scalar field theory model in (1+1)-Minkowskian space-time is addressed. The potential term $U(phi_1,phi_2)$ is given by a polynomial of fourth degree in the first field component and of sixth degre