ﻻ يوجد ملخص باللغة العربية
We show how to derive a simple integrator for the Langevin equation and illustrate how it is possible to check the accuracy of the obtained distribution on the fly, using the concept of effective energy introduced in a recent paper [J. Chem. Phys. 126, 014101 (2007)]. Our integrator leads to correct sampling also in the difficult high-friction limit. We also show how these ideas can be applied in practical simulations, using a Lennard-Jones crystal as a paradigmatic case.
We expand on the previously published Gr{o}nbech-Jensen Farago (GJF) thermostat, which is a thermodynamically sound variation on the St{o}rmer-Verlet algorithm for simulating discrete-time Langevin equations. The GJF method has been demonstrated to g
The computational study of conformational transitions in RNA and proteins with atomistic molecular dynamics often requires suitable enhanced sampling techniques. We here introduce a novel method where concurrent metadynamics are integrated in a Hamil
We study the exponential convergence to the stationary state for nonequilibrium Langevin dynamics, by a perturbative approach based on hypocoercive techniques developed for equilibrium Langevin dynamics. The Hamiltonian and overdamped limits (corresp
Kinetic energy equipartition is a premise for many deterministic and stochastic molecular dynamics methods that aim at sampling a canonical ensemble. While this is expected for real systems, discretization errors introduced by the numerical integrati
In light of the recently published complete set of statistically correct GJ methods for discrete-time thermodynamics, we revise the differential operator splitting method for the Langevin equation in order to comply with the basic GJ thermodynamic sa