ﻻ يوجد ملخص باللغة العربية
Kinetic energy equipartition is a premise for many deterministic and stochastic molecular dynamics methods that aim at sampling a canonical ensemble. While this is expected for real systems, discretization errors introduced by the numerical integration may distort such assumption. Fortunately, backward error analysis allows us to identify the quantity that is actually subject to equipartition. This is related to a shadow Hamiltonian, which coincides with the specified Hamiltonian only when the time-step size approaches zero. This paper deals with discretization effects in a straightforward way. With a small computational overhead, we obtain refine
Molecular dynamics is one of the most commonly used approaches for studying the dynamics and statistical distributions of many physical, chemical, and biological systems using atomistic or coarse-grained models. It is often the case, however, that th
To take into account nuclear quantum effects on the dynamics of atoms, the path integral molecular dynamics (PIMD) method used since 1980s is based on the formalism developed by R. P. Feynman. However, the huge computation time required for the PIMD
Here we present a program aimed at free-energy calculations in molecular systems. It consists of a series of routines that can be interfaced with the most popular classical molecular dynamics (MD) codes through a simple patching procedure. This leave
Molecular dynamics simulations require barostats to be performed at constant pressure. The usual recipe is to employ the Berendsen barostat first, which displays a first-order volume relaxation efficient in equilibration but results in incorrect volu
We study a system of $N$ particles interacting through the Kac collision, with $m$ of them interacting, in addition, with a Maxwellian thermostat at temperature $frac{1}{beta}$. We use two indicators to understand the approach to the equilibrium Gaus