ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence rates for nonequilibrium Langevin dynamics

315   0   0.0 ( 0 )
 نشر من قبل Gabriel Stoltz
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the exponential convergence to the stationary state for nonequilibrium Langevin dynamics, by a perturbative approach based on hypocoercive techniques developed for equilibrium Langevin dynamics. The Hamiltonian and overdamped limits (corresponding respectively to frictions going to zero or infinity) are carefully investigated. In particular, the maximal magnitude of admissible perturbations are quantified as a function of the friction. Numerical results based on a Galerkin discretization of the generator of the dynamics confirm the theoretical lower bounds on the spectral gap.



قيم البحث

اقرأ أيضاً

We present results on the ballistic and diffusive behavior of the Langevin dynamics in a periodic potential that is driven away from equilibrium by a space-time periodic driving force, extending some of the results obtained by Collet and Martinez. In the hyperbolic scaling, a nontrivial average velocity can be observed even if the external forcing vanishes in average. More surprisingly, an average velocity in the direction opposite to the forcing may develop at the linear response level -- a phenomenon called negative mobility. The diffusive limit of the non-equilibrium Langevin dynamics is also studied using the general methodology of central limit theorems for additive functionals of Markov processes. To apply this methodology, which is based on the study of appropriate Poisson equations, we extend recent results on pointwise estimates of the resolvent of the generator associated with the Langevin dynamics. Our theoretical results are illustrated by numerical simulations of a two-dimensional system.
In this paper, we study the diffusive limit of solutions to the generalized Langevin equation (GLE) in a periodic potential. Under the assumption of quasi-Markovianity, we obtain sharp longtime equilibration estimates for the GLE using techniques fro m the theory of hypocoercivity. We then prove asymptotic results for the effective diffusion coefficient in three limiting regimes: the short memory, the overdamped and the underdamped limits. Finally, we employ a recently developed spectral numerical method in order to calculate the effective diffusion coefficient for a wide range of (effective) friction coefficients, confirming our asymptotic results.
We study homogenization for a class of generalized Langevin equations (GLEs) with state-dependent coefficients and exhibiting multiple time scales. In addition to the small mass limit, we focus on homogenization limits, which involve taking to zero t he inertial time scale and, possibly, some of the memory time scales and noise correlation time scales. The latter are meaningful limits for a class of GLEs modeling anomalous diffusion. We find that, in general, the limiting stochastic differential equations (SDEs) for the slow degrees of freedom contain non-trivial drift correction terms and are driven by non-Markov noise processes. These results follow from a general homogenization theorem stated and proven here. We illustrate them using stochastic models of particle diffusion.
We give a pedagogical introduction to a selection of recently discussed topics in nonequilibrium statistical mechanics, concentrating mostly on formal structures and on general principles. Part I contains an overview of the formalism of lattice gases that we use to explain various symmetries and inequalities generally valid for nonequilibrium systems, including the fluctuation symmetry, Jarzynski equality, and the direction of currents. In Part II we concentrate on the macroscopic state and how entropy provides a bridge between microscopic dynamics and macroscopic irreversibility; included is a construction of quantum macroscopic states and a result on the equivalence of ensembles.
We study the adiabatic response of open systems governed by Lindblad evolutions. In such systems, there is an ambiguity in the assignment of observables to fluxes (rates) such as velocities and currents. For the appropriate notion of flux, the formul as for the transport coefficients are simple and explicit and are governed by the parallel transport on the manifold of instantaneous stationary states. Among our results we show that the response coefficients of open systems, whose stationary states are projections, is given by the adiabatic curvature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا