ﻻ يوجد ملخص باللغة العربية
Starting from the symmetrical reflection functional equation of the zeta function, we have found that the sigma values satisfying zeta(s) = 0 must also satisfy both |zeta(s)| = |zeta(1 - s)| and |gamma(s/2)zeta(s)| = |gamma((1 - s)/2)zeta(1 - s)|. We have shown that sigma = 1/2 is the only numeric solution that satisfies this requirement.
In this article, we will prove Riemann Hypothesis by using the mean value theorem of integrals. The function $ xi(s) $ is introduced by Riemann, which zeros are identical equal to non-trivial zeros of zeta function.The function $ xi(s) $ is an entire
The Riemann hypothesis is equivalent to the $varpi$-form of the prime number theorem as $varpi(x) =O(xsp{1/2} logsp{2} x)$, where $varpi(x) =sumsb{nle x} bigl(Lambda(n) -1big)$ with the sum running through the set of all natural integers. Let ${maths
The Riemann hypothesis, conjectured by Bernhard Riemann in 1859, claims that the non-trivial zeros of $zeta(s)$ lie on the line $Re(s) =1/2$. The density hypothesis is a conjectured estimate $N(lambda, T) =Obigl(Tsp{2(1-lambda) +epsilon} bigr)$ for a
We study the algebraic structure of the eigenvalues of a Hamiltonian that corresponds to a many-body fermionic system. As the Hamiltonian is quadratic in fermion creation and/or annihilation operators, the system is exactly integrable and the complet
Simple cubic lattice (SC lattice) can be viewed as plane triangular lattice (PT lattice) by viewing it along its principle diagonal lines. By viewing thus we establish the exact one-to-one correspondence between the closed graphs on SC lattice and th