ﻻ يوجد ملخص باللغة العربية
In this article, we will prove Riemann Hypothesis by using the mean value theorem of integrals. The function $ xi(s) $ is introduced by Riemann, which zeros are identical equal to non-trivial zeros of zeta function.The function $ xi(s) $ is an entire function, and its real part and imaginary part can be represented as infinite integral form. In the special condition, the mean value theorem of integrals is established for infinite integral. Using the mean value theorem of integrals and the isolation of zeros of analytic function, we determined that all zeros of the function $ xi(s) $ have real part equal to$frac{1}{2}$, namely, all non-trivial zeros of zeta function lies on the critical line. Riemann Hypothesis is true.
Starting from the symmetrical reflection functional equation of the zeta function, we have found that the sigma values satisfying zeta(s) = 0 must also satisfy both |zeta(s)| = |zeta(1 - s)| and |gamma(s/2)zeta(s)| = |gamma((1 - s)/2)zeta(1 - s)|. We
The Riemann hypothesis is equivalent to the $varpi$-form of the prime number theorem as $varpi(x) =O(xsp{1/2} logsp{2} x)$, where $varpi(x) =sumsb{nle x} bigl(Lambda(n) -1big)$ with the sum running through the set of all natural integers. Let ${maths
We study the algebraic structure of the eigenvalues of a Hamiltonian that corresponds to a many-body fermionic system. As the Hamiltonian is quadratic in fermion creation and/or annihilation operators, the system is exactly integrable and the complet
The Riemann hypothesis, conjectured by Bernhard Riemann in 1859, claims that the non-trivial zeros of $zeta(s)$ lie on the line $Re(s) =1/2$. The density hypothesis is a conjectured estimate $N(lambda, T) =Obigl(Tsp{2(1-lambda) +epsilon} bigr)$ for a
Physicists become acquainted with special functions early in their studies. Consider our perennial model, the harmonic oscillator, for which we need Hermite functions, or the Laguerre functions in quantum mechanics. Here we choose a particular number