ﻻ يوجد ملخص باللغة العربية
Simple cubic lattice (SC lattice) can be viewed as plane triangular lattice (PT lattice) by viewing it along its principle diagonal lines. By viewing thus we establish the exact one-to-one correspondence between the closed graphs on SC lattice and the corresponding closed graphs on PT lattice. We thus see that the propagator for PT lattice (with suitable modifications) can be used to solve, at least in principle, the 3D Ising problem for SC lattice in the absence of external magnetic field. A new method is then proposed to generate high temperature expansion for the partition function. This method is applicable to 2D as well as 3D lattices. This method does not require explicit counting of closed graphs and this counting is achieved in an indirect way and thus exact series expansion can be achieved up to any sufficiently large order.
Recent results for the Ising model with first ($J_1$) and second ($J_2$) neighbour interactions on the body-centered cubic (bcc) lattice suggest that this model can host signatures of strong frustration, including Schottky anomalies and residual entr
Starting from the symmetrical reflection functional equation of the zeta function, we have found that the sigma values satisfying zeta(s) = 0 must also satisfy both |zeta(s)| = |zeta(1 - s)| and |gamma(s/2)zeta(s)| = |gamma((1 - s)/2)zeta(1 - s)|. We
We present a necessary and sufficient condition for a cubic polynomial to be positive for all positive reals. We identify the set where the cubic polynomial is nonnegative but not all positive for all positive reals, and explicitly give the points wh
The classical Heisenberg antiferromagnet with uniaxial exchange anisotropy, the XXZ model, in a magnetic field on a simple cubic lattice is studied with the help of extensive Monte Carlo simulations. Analyzing, especially, various staggered susceptib
This paper proves that there does not exist a polynomial-time algorithm to the the subset sum problem. As this problem is in NP, the result implies that the class P of problems admitting polynomial-time algorithms does not equal the class NP of probl