ﻻ يوجد ملخص باللغة العربية
The Riemann hypothesis is equivalent to the $varpi$-form of the prime number theorem as $varpi(x) =O(xsp{1/2} logsp{2} x)$, where $varpi(x) =sumsb{nle x} bigl(Lambda(n) -1big)$ with the sum running through the set of all natural integers. Let ${mathsf Z}(s) = -tfrac{zetasp{prime}(s)}{zeta(s)} -zeta(s)$. We use the classical integral formula for the Heaviside function in the form of ${mathsf H}(x) =intsb{m -iinfty} sp{m +iinfty} tfrac{xsp{s}}{s} dd s$ where $m >0$, and ${mathsf H}(x)$ is 0 when $tfrac{1}{2} <x <1$, $tfrac{1}{2}$ when $x=1$, and 1 when $x >1$. However, we diverge from the literature by applying Cauchys residue theorem to the function ${mathsf Z}(s) cdot tfrac{xsp{s}} {s}$, rather than $-tfrac{zetasp{prime}(s)} {zeta(s)} cdot tfrac{xsp{s}}{s}$, so that we may utilize the formula for $tfrac{1}{2}< m <1$, under certain conditions. Starting with the estimate on $varpi(x)$ from the trivial zero-free region $sigma >1$ of ${mathsf Z}(s)$, we use induction to reduce the size of the exponent $theta$ in $varpi(x) =O(xsp{theta} logsp{2} x)$, while we also use induction on $x$ when $theta$ is fixed. We prove that the Riemann hypothesis is valid under the assumptions of the explicit strong density hypothesis and the Lindelof hypothesis recently proven, via a result of the implication on the zero free regions from the remainder terms of the prime number theorem by the power sum method of Turan.
In this article, we will prove Riemann Hypothesis by using the mean value theorem of integrals. The function $ xi(s) $ is introduced by Riemann, which zeros are identical equal to non-trivial zeros of zeta function.The function $ xi(s) $ is an entire
The Riemann hypothesis, conjectured by Bernhard Riemann in 1859, claims that the non-trivial zeros of $zeta(s)$ lie on the line $Re(s) =1/2$. The density hypothesis is a conjectured estimate $N(lambda, T) =Obigl(Tsp{2(1-lambda) +epsilon} bigr)$ for a
Starting from the symmetrical reflection functional equation of the zeta function, we have found that the sigma values satisfying zeta(s) = 0 must also satisfy both |zeta(s)| = |zeta(1 - s)| and |gamma(s/2)zeta(s)| = |gamma((1 - s)/2)zeta(1 - s)|. We
We present a common ground for infinite sums, unordered sums, Riemann integrals, arc length and some generalized means. It is based on extending functions on finite sets using Hausdorff metric in a natural way.
We study the algebraic structure of the eigenvalues of a Hamiltonian that corresponds to a many-body fermionic system. As the Hamiltonian is quadratic in fermion creation and/or annihilation operators, the system is exactly integrable and the complet