ترغب بنشر مسار تعليمي؟ اضغط هنا

قابلية جمع مشتقة متسلسلة فورييه و مرافقتها بطريقة نيورلند

The Summability Of Derived Fourier Series and Its Conjugate By Nörlund Method

1004   0   98   0 ( 0 )
 تاريخ النشر 2015
والبحث باللغة العربية
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

هناك أنواع عديدة من المعاييلا و ضمن شروط متنوعة لقابلية جمع مشتقة متسلسلة فورييه و مرافقتها بطريقة نيورلند, قد تم أخذها من قبل Hille و Tamarkin عام 1932 و Astrachan عام 1936 و Prasad و Siddiqi عام 1950, و سوف ندرس هنا نوع هام و مختلف من المعايير لقابلية جمع لمشتقة متسلسلة فورييه, حيث سنعتبر أن الدالة (f(x محدودة التغيير ( ذات تغيرات محدودة ), قابلة للمكاملة وفق ليبغ, دورية.


ملخص البحث
تتناول هذه الورقة البحثية دراسة قابلية جمع مشتقة متسلسلة فورييه ومرافقتها باستخدام طريقة نيورلند. تستعرض الورقة المعايير المختلفة لقابلية الجمع التي تم تطويرها من قبل باحثين سابقين مثل Hille وTamarkin (1932)، Astrachan (1936)، وPrasad وSiddiqi (1950). يركز البحث على معيار جديد وعام لقابلية جمع (N,p) لمشتقة متسلسلة فورييه، حيث يتم اعتبار الدالة ذات تغير محدود وقابلة للمكاملة وفق ليبغ ودورية بدورة 2π. كما تتناول الورقة دراسة المتسلسلة المرافقة لمشتقة متسلسلة فورييه باستخدام طريقة سيزارو (C, α) وأبحاث أخرى ذات صلة. تهدف الدراسة إلى تطوير وتحسين الطرائق المتبعة في دراسة قابلية الجمع من خلال مقارنة طريقة نيورلند بطرائق أخرى مثل سيزارو وطرق أخرى. تتضمن الورقة تعريفات ومبرهنات متعلقة بطريقة نيورلند وقابلية جمع المتسلسلات، وتستعرض النتائج التي تم التوصل إليها من خلال استخدام هذه الطريقة.
قراءة نقدية
دراسة نقدية: تقدم الورقة البحثية مساهمة قيمة في مجال الرياضيات من خلال تقديم معيار جديد لقابلية جمع مشتقة متسلسلة فورييه ومرافقتها باستخدام طريقة نيورلند. ومع ذلك، يمكن تحسين الورقة من خلال تقديم أمثلة تطبيقية توضح كيفية استخدام هذه الطريقة في مسائل حقيقية. كما أن الورقة تعتمد بشكل كبير على الأبحاث السابقة دون تقديم تحليل نقدي كافٍ لهذه الأبحاث. يمكن أن تكون الورقة أكثر شمولية إذا تضمنت مقارنة أعمق بين طريقة نيورلند والطرائق الأخرى المستخدمة في دراسة قابلية الجمع. بالإضافة إلى ذلك، يمكن تحسين الورقة من خلال تقديم شرح أكثر وضوحًا لبعض المفاهيم الرياضية المعقدة لتكون أكثر قابلية للفهم من قبل القراء غير المتخصصين.
أسئلة حول البحث
  1. ما هو الهدف الرئيسي من البحث؟

    الهدف الرئيسي هو تطوير وتحسين الطرائق المتبعة في دراسة قابلية الجمع من خلال دراسة قابلية جمع مشتقة متسلسلة فورييه ومرافقتها باستخدام طريقة نيورلند ومقارنة هذه الطريقة بطرائق أخرى.

  2. ما هي الشروط التي يجب أن تحققها الدالة لتكون قابلة للجمع بطريقة نيورلند؟

    يجب أن تكون الدالة محدودة التغير، قابلة للمكاملة وفق ليبغ، ودورية بدورة 2π.

  3. ما هي الطرائق الأخرى التي تم مقارنتها بطريقة نيورلند في الورقة؟

    تمت مقارنة طريقة نيورلند بطرائق أخرى مثل طريقة سيزارو (C, α) وطرائق أخرى مثل آبل وهولدر وريمان وريس وبوريل وهاوسدورف وفاليرون.

  4. ما هي النتائج الرئيسية التي توصلت إليها الدراسة؟

    توصلت الدراسة إلى أن طريقة نيورلند تعتبر طريقة فعالة لدراسة قابلية جمع مشتقة متسلسلة فورييه ومرافقتها، وأنها تقدم نتائج جيدة مقارنة بالطرائق الأخرى.


المراجع المستخدمة
LAL,S YADAV,P 2002 Matrix Summability Of The Conjugate Series Of Derived Fourier Series Tamkang Journal Of Mathematics Vol . 33 . 35-43
TRIPATHI,L PRASAD,B 1963 On The Norlund Summability Of The Derived Fourier Series Department Of Mathematics 548-555
Varshney,P 1961 On The Matrix Summability Of The Derived Fourier Series Bollettion Unione Matematica Italiana Vol . 16 . 379-382
قيم البحث

اقرأ أيضاً

سنفرض أن الدالة f دورية و كمولة لوبيغيا , سنقدم في هذا البحث مبرهنتين حول قابلية متساسلة فورييه و مرافقتها بالطريقة المصفوفية التقريبية, و تعمم دراستنا جميع النتائج المعروفة سابقا في هذا المجال.
في هذا البحث نقوم بدراسة قابلية جمع متسلسلة فورييه ( و تدعى معاملات فورييه ), و ذلك بالطريقة المصفوفية. سيتم عرض هذه الطريقة من خلال مبرهنة مع إثباتها, و لكن بعد وضع التعاريف و المفاهيم الأساسية اللازمة لذلك.
تعد متسلسلات فورييه المثلثية إحدى الدراسات الهامة في التحليل الحديث وقد برزت هذه المتسلسلات لاول مرة عند دراسة العالم برنوبي للأوتار المهتزة عام (1753)
في هذا البحث نقدم طريقة فورييه الطيفية لحل المعادلات التفاضلية ( سنطبق الطريقة على معادلة تفاضلية عادية ) إذ سنقوم في القسم الأول بعرض تحويل فورييه , في القسم الثاني سنعرض خصائص التقريب و نطبق هذه الطريقة على مثال عددي للتحقق من النتائج في القسم الثا لث , ثم نكتب برنامج ماتلاب Matlab لإعطاء النتائج العددية .
ندرسُ فُي هذا اُلبحث تُقارب متسلسلات فورييه - هاآر لدوال مشتقاتها مستمرة, وُ لدواب بُعدّة مُتغيرات ذُات مُشتقُّات جُزئيُّة مُستمرُّةُ.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا