تعلم نماذج اللغة العصبية غير المعلمة (NLMS) التوزيعات التنبؤية للنص باستخدام مصدر بيانات خارجي، والذي يسمح لهم بالتعلم من خلال حفظ مخطط Datapooints التدريبي بشكل صريح.في حين أن هذه النماذج فعالة، فإن هذه النماذج غالبا ما تتطلب استرجاع من مؤشرات بيانات كبيرة في وقت الاختبار، مما يزيد بشكل كبير من تسليم الاستدلال، وبالتالي يحد من نشر NLMS غير المعلم في التطبيقات العملية.في هذه الورقة، نأخذ نموذج لغة Geature K-Neave المقترح مؤخرا كمثال، استكشاف الطرق لتحسين كفاءتها على طول الأبعاد المختلفة.تبين التجارب في معيار Wikitext-103 القياسي ومجموعات بيانات التكيف عن المجال أن أساليبنا قادرة على تحقيق ما يصل إلى سرعة 6X في سرعة الاستدلال مع الاحتفاظ بأداء مماثل.قد يوفر التحليل التجريبي الذي نقدمه مبادئ توجيهية للبحث في المستقبل يسعى إلى تطوير أو نشر أكثر كفاءة غير رسمية غير رسمية.
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore, which allows them to learn through explicitly memorizing the training datapoints. While effective, these models often require retrieval from a large datastore at test time, significantly increasing the inference overhead and thus limiting the deployment of non-parametric NLMs in practical applications. In this paper, we take the recently proposed k-nearest neighbors language model as an example, exploring methods to improve its efficiency along various dimensions. Experiments on the standard WikiText-103 benchmark and domain-adaptation datasets show that our methods are able to achieve up to a 6x speed-up in inference speed while retaining comparable performance. The empirical analysis we present may provide guidelines for future research seeking to develop or deploy more efficient non-parametric NLMs.
المراجع المستخدمة
https://aclanthology.org/
كشف العاطفة مهمة مهمة يمكن تطبيقها على بيانات وسائل التواصل الاجتماعي لاكتشاف المعرفة الجديدة.في حين أن استخدام طرق التعلم العميق لهذه المهمة كان سائدا، فهي نماذج من الصندوق الأسود، مما يجعل قراراتها بجد لتفسير مشغل بشري.لذلك، في هذه الورقة، نقترح نه
تثبت نماذج اللغة القائمة على المحولات (LMS) على مجموعات نصية كبيرة تخزين ثروة من المعرفة الدلالية. ومع ذلك، 1) أنها ليست فعالة كوسميز الجملة عند استخدامها خارج الرف، و 2) وبالتالي لا تتأخر عادة وراء إعادة احتجازها بشكل تقريبي (E.G.، عبر اختيار الاستج
نقترح معالجة مهام توليد البيانات إلى النص عن طريق الربط مباشرة من جانب شرائح النص من الأزواج المستهدفة من الجيران.على عكس العمل الحديث الذي تقوم بالشروط على الجيران المسترجع ولكن يولد رمزا نصي نصي، من اليسار إلى اليمين، نتعلم السياسة التي تتعامل مباش
هل يمكن لصق Bert مدربة مسبقا بلغة واحدة و GPT لآخر لترجمة النصوص؟يؤدي التدريب للإشراف على الذات باستخدام بيانات أحادية الأونلينغ فقط إلى نجاح نماذج اللغة المدربة مسبقا (ملثمين) في العديد من مهام NLP.ومع ذلك، فإن ربط بيرت مباشرة كتشفير و GPT حيث أن وح
النمذجة اللغوية المعقدة (MLM) هي واحدة من المهام الفرعية الرئيسية في محاكاة لغة الرؤية. في الإعداد عبر الوسائط، يتم ملثمين الرموز في الجملة بشكل عشوائي، والنموذج يتوقع أن تكون الرموز الممكنة التي أعطتها الصورة والنص. في هذه الورقة، نلاحظ العديد من عي