ترغب بنشر مسار تعليمي؟ اضغط هنا

ConvFit: ضبط طرازات اللغة الدماغية المحادثة

ConvFiT: Conversational Fine-Tuning of Pretrained Language Models

309   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تثبت نماذج اللغة القائمة على المحولات (LMS) على مجموعات نصية كبيرة تخزين ثروة من المعرفة الدلالية. ومع ذلك، 1) أنها ليست فعالة كوسميز الجملة عند استخدامها خارج الرف، و 2) وبالتالي لا تتأخر عادة وراء إعادة احتجازها بشكل تقريبي (E.G.، عبر اختيار الاستجابة) حول مهام المحادثة مثل الكشف عن النوايا (ID). في هذا العمل، نقترح نقايد، وهو إجراء بسيط وفعالين من مرحلتين يقومون بتحويل أي ما قبل الاحتراق إلى تشفير محادثة عالمية (بعد المرحلة الأولى - Convfit-Conffit-ING) وتشمير الجملة التخصصية للمهام (بعد المرحلة 2). نوضح أن 1) محاكاة محادثة بالكامل غير مطلوبة، وأن LMS يمكن تحويل LMS بسرعة إلى ترميزات محادثة فعالة بكميات أصغر بكثير من البيانات غير المخلفات؛ 2) يمكن أن تكون LMS محددة ضبطها بشكل جيد في تشفير الجملة المتخصصة في المهام، وتحسينها للحصول على الدلالات الفاخرة من مهمة معينة. وبالتالي، تسمح تشفير الجملة المتخصصة بمعرف المعرف باعتباره مهمة تشابه دلالية بسيطة تقوم على استرجاع الجيران القابل للتفسير. نحن نقوم بالتحقق من صحة متانة وإمدادات الإطار النقدي مع مثل هذا الاستدلال القائم على التشابه على مجموعات تقييم الهوية القياسية: يحقق LMS Convfit-ed أداء معرف أحدث في المجال، مع مكاسب معينة في الأكثر تحديا، قليلة STUPS -SHOT.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

شخصية مفيدة لتنبؤ استجابة الحوار. ومع ذلك، فإن الشخصية المستخدمة في الدراسات الحالية محددة مسبقا ويصعب الحصول عليها قبل محادثة. لمعالجة هذه المشكلة، نقوم بدراسة مهمة جديدة، اسمه مكبر صوت مكبر الصوت (SPD)، الذي يهدف إلى اكتشاف شخصيات المتكلم بناء على نص المحادثة العادي. في هذه المهمة، يتم تفتيش شخص أفضل مطابقة من المرشحين بالنظر إلى نص المحادثة. هذه مهمة مطابقة دهالية متعددة إلى العديد لأن كل من السياقات والشخصية في SPD تتكون من جمل متعددة. يعزز التبعية الطويلة الأجل والتكرار الديناميكي بين هذه الجمل صعوبة هذه المهمة. نحن نبني مجموعة بيانات ل SPD، التي يطلق عليها مواضيع شخصيا على أخصائي الدردشة (PMPC). علاوة على ذلك، نقيم العديد من النماذج الأساسية واقتراح شبكات مطابقة الكلام إلى الملف الشخصي (U2P) لهذه المهمة. تعمل نماذج U2P بتصبيح جيد يعالج كل من السياقات والعشرون كمجموعات من تسلسل متعددة. بعد ذلك، يتم تسجيل كل زوج تسلسل ويتم الحصول على درجة إجمالية قابلة للتفسير للحصول على زوج سياق شخصي من خلال التجميع. تظهر نتائج التقييم أن نماذج U2P تتفوق على نظرائهم الأساسيين بشكل كبير.
يتعين على نماذج اللغة المدربة مسبقا (PRLM) لإدارة وحدات الإدخال بعناية عند التدريب على نص كبير جدا مع مفردات تتكون من ملايين الكلمات. أظهرت الأعمال السابقة أن دمج معلومات المسيح على مستوى الأمان بشأن الكلمات المتتالية في التدريب المسبق يمكن أن تحسن أ داء PRLMS. ومع ذلك، بالنظر إلى أن أدلة المسكنات المستفادة مقدمة وإثباتها في التدريب المسبق، فإن الطرق السابقة تستغرق وقتا طويلا ونقص المرونة. لتخفيف الإزعاج، تقدم هذه الورقة طريقة رواية تمتد دقيقة لضبط PRLMS، مما يسهل إعداد SPES يتم تحديده على تكيفه بواسطة مهام معينة من المصب أثناء مرحلة الضبط الجميلة. بالتفصيل، سيتم تجزئة أي جمل تتم معالجتها من قبل PRLM في تمديدات متعددة وفقا لقاموس ما قبل العينات. ثم سيتم إرسال معلومات التجزئة من خلال وحدة CNN الهرمية مع مخرجات التمثيل من PRLM وتولد في نهاية المطاف تمثيلا محسن. تشير التجارب على معيار الغراء إلى أن طريقة ضبط الدقيقة المقترحة تعزز بشكل كبير PRLM، وفي الوقت نفسه، تقدم المزيد من المرونة بطريقة فعالة.
تعرض هذه الورقة تعدد الأبعاد التعدين على المحتوى الذي تم إنشاؤه من قبل المستخدم الذي تم جمعه من Newshires وخدمات الشبكات الاجتماعية بثلاث لغات مختلفة: اللغة الإنجليزية --- لغة عالية الموارد، المالطية --- لغة منخفضة الموارد، والالططية-الإنجليزية -- لغ ة تبديل الكود.العديد من طرازات لغة التصنيف العصبي المتعددة التي تلبي اللغات التي تلبيها اللغات الإنجليزية واللطاطية واللطاطية والإنجليزية وكذلك الثانية) خمسة أبعاد الرأي الاجتماعي المختلفة، وهي الذاتية، قطبية المعنويات، العاطفة والسخرية والسخرية، مقدمة.تتم مناقشة النتائج لكل نموذج تصنيف لكل البعد الاجتماعي.
استخدام البيانات من اختبارات المرنة الإنجليزية، والتي أبلغت فيها المواضيع ذاتها الذاتي عن جنسهن وعمرها والتعليم والعرق، ندرس اختلافات الأداء في نماذج اللغة المحددة مسبقا عبر المجموعات الديموغرافية، والتي تحددها هذه الصفات (المحمية).نوضح ثغرات أداء وا سعة عبر الفئات الديموغرافية وإظهار أن نماذج اللغة المسبقة مسبقا تكافح المتحدثين ذكور الشباب غير الأبيض؛على سبيل المثال، لا تعلم نماذج اللغة المحددة مسبقا تعلم التحيزات الاجتماعية (الجمعيات النمطية) - تعلم النماذج اللغوية المحددة أيضا التحيزات الاجتماعية، وتعلم التحدث أكثر شيئين أكثر من مثل الآخرين.ومع ذلك، نوضح أنه، باستثناء نماذج بيرت، تخفض نماذج اللغة الأكبر المحددة مسبقا بعض فجوات الأداء بين الأغلبية والأقليات.
تركز العمل الحالي على التحقيق في نماذج اللغة المحددة مسبقا (LMS) في الغالب على المهام الأساسية على مستوى الجملة.في هذه الورقة، نقدم إجراء خطاب على مستوى المستندات لتقييم قدرة LMS المسبقة على التقاط العلاقات على مستوى المستندات.نقوم بتجربة 7 LMS محددة مسبقا، 4 لغات، و 7 مهام قيد الخطاب، والعثور على بارت ليكون بشكل عام أفضل نموذج في التقاط الخطاب - - ولكن فقط في تشفيرها، مع بيرت أداء بشكل مفاجئ نموذج الأساس.عبر النماذج المختلفة، هناك اختلافات كبيرة في أفضل طبقات في التقاط معلومات خطاب، والتفاوتات الكبيرة بين النماذج.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا