تستند نهج كتابة الكيانات التقليدية إلى نماذج تصنيف مستقلة، مما يجعلها من الصعب التعرف على أنواع الكيان المعتمدة والذات طويل الذيل والحبوب. في هذه الورقة، نجادل بأن التبعيات الخارجية والمترنوية المتطودة ضمنيا بين الملصقات يمكن أن توفر معرفة حاسمة لمعالجة التحديات المذكورة أعلاه. تحقيقا لهذه الغاية، نقترح شبكة تسمية الملصقات (LRN)، والتي الأسباب التسلل تسميات الكيانات الجميلة من خلال اكتشاف واستغلال المعرفة التبعيات الملصقات المتاحة في البيانات. على وجه التحديد، تستخدم LRN شبكة التراجع التلقائي لإجراء منطق استنتاجي ورسم رسمي من السمة الحيوية لإجراء منطق حثي بين الملصقات، والتي يمكن أن تكفذ بشكل فعال، وتعلم وسبب تبعيات التسمية المعقدة في مجموعة تسلسل إلى مجموعة، ونهاية إلى نهاية وبعد تظهر التجارب أن LRN تحقق الأداء الحديثة على معايير كيانات كيانات فائقة الفيرلة القياسية، ويمكن أيضا حل مشكلة تسمية الذيل الطويل بشكل فعال.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose Label Reasoning Network(LRN), which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
المراجع المستخدمة
https://aclanthology.org/
يعمل العمل الحالي على كتابة كيان غرامة (FET) عادة النماذج التلقائية على مجموعات البيانات التي تم الحصول عليها باستخدام قواعد المعرفة (KB) كشراف بعيد.ومع ذلك، فإن الاعتماد على KB يعني أنه يمكن إعاقة هذا الإعداد التدريبي من خلال عدم وجود أو عدم انتظام
تحليل المدونات الصغيرة حيث ننشر ما نقوم بتمكيننا من أداء تطبيقات مختلفة مثل تحليل الاتجاه الاجتماعي وتوصية الكيان. لتتبع الاتجاهات الناشئة في مجموعة متنوعة من المجالات، نريد تصنيف المعلومات عن الكيانات الناشئة (على سبيل المثال، الصورة الرمزية 2) في م
غالبا ما يتطلب تدريب نماذج NLP كميات كبيرة من بيانات التدريب المسمى، مما يجعل من الصعب توسيع النماذج الحالية لغات جديدة.في حين تعتمد Transfer-Transfer عبر اللغات الصفرية على تضييق كلمة متعددة اللغات لتطبيق نموذج تدرب على لغة واحدة لآخر، فإن Yarowski
على الرغم من نجاح أنظمة الحوار العصبي في تحقيق أداء عال في مجلس الإدارة، لا يمكنهم تلبية متطلبات المستخدمين في الممارسة العملية، بسبب ضعف مهارات المنطق. السبب الأساسي هو أن معظم نماذج الحوار العصبي تلتقط فقط المعلومات النحوية والدلية، ولكنها تفشل في
التعلم الإشرافه يفترض أن ملصق الحقيقة الأرض موجود.ومع ذلك، فإن موثوقية هذه الحقيقة الأرضية تعتمد على المنشآت البشرية، التي لا توافق في كثير من الأحيان.وقد أظهر العمل السابق أن هذا الخلاف يمكن أن يكون مفيدا في نماذج التدريب.نقترح طريقة جديدة لدمج هذا