التعلم الإشرافه يفترض أن ملصق الحقيقة الأرض موجود.ومع ذلك، فإن موثوقية هذه الحقيقة الأرضية تعتمد على المنشآت البشرية، التي لا توافق في كثير من الأحيان.وقد أظهر العمل السابق أن هذا الخلاف يمكن أن يكون مفيدا في نماذج التدريب.نقترح طريقة جديدة لدمج هذا الخلاف كمعلومات: بالإضافة إلى حساب الأخطاء القياسي، نستخدم التسميات الناعمة (أي توزيعات الاحتمالات على الملصقات Annotator) كملقمة مساعدة في شبكة عصبية متعددة المهام.نقيس الاختلاف بين التنبؤات والملصقات الناعمة المستهدفة مع العديد من وظائف الخسائر وتقييم النماذج على مهام NLP المختلفة.نجد أن المهمة الإضافية للتنبؤ بالعلامة الناعمة تقلل من عقوبة الأخطاء بشأن الكيانات الغامضة، وبالتالي تخفف من التجول.يحسن بشكل كبير الأداء عبر المهام، بما يتجاوز النهج القياسي والعمل السابق.
Supervised learning assumes that a ground truth label exists. However, the reliability of this ground truth depends on human annotators, who often disagree. Prior work has shown that this disagreement can be helpful in training models. We propose a novel method to incorporate this disagreement as information: in addition to the standard error computation, we use soft-labels (i.e., probability distributions over the annotator labels) as an auxiliary task in a multi-task neural network. We measure the divergence between the predictions and the target soft-labels with several loss-functions and evaluate the models on various NLP tasks. We find that the soft-label prediction auxiliary task reduces the penalty for errors on ambiguous entities, and thereby mitigates overfitting. It significantly improves performance across tasks, beyond the standard approach and prior work.
المراجع المستخدمة
https://aclanthology.org/
تستند نهج كتابة الكيانات التقليدية إلى نماذج تصنيف مستقلة، مما يجعلها من الصعب التعرف على أنواع الكيان المعتمدة والذات طويل الذيل والحبوب. في هذه الورقة، نجادل بأن التبعيات الخارجية والمترنوية المتطودة ضمنيا بين الملصقات يمكن أن توفر معرفة حاسمة لمعا
تهدف وفرة العمل المنهجي إلى اكتشاف اللغة البغيضة والعنصرية في النص. ومع ذلك، تعوق هذه الأدوات عن مشاكل مثل اتفاقية معلقية منخفضة وتبقى غير متصل إلى حد كبير من العمل النظري في العرق والعنصرية في العلوم الاجتماعية. باستخدام التعليقات التوضيحية من 5188
يتم جذب تصنيف المستندات متعددة الملصقات، وربط مثيل مستندات واحدة بمجموعة من الملصقات ذات الصلة، المزيد والمزيد من اهتمام البحوث. استكشاف الأساليب الحالية دمج المعلومات وراء النص، مثل بيانات تعريف الوثيقة أو هيكل الملصقات. ومع ذلك، فإن هذه الأساليب إم
تعتمد تقنيات AdgeDDing Word بشدة على ترددات الكلمات في Corpus، وتتأثر سلبا بفشل في تقديم تمثيلات موثوقة للكلمات ذات التردد المنخفض أو الكلمات غير المرئية أثناء التدريب. لمعالجة هذه المشكلة، نقترح خوارزمية لتعلم Admeddings عن الكلمات النادرة على أساس
حققت النماذج التراجعية التلقائية واسعة النطاق نجاحا كبيرا في توليد استجابة الحوار، بمساعدة طبقات المحولات. ومع ذلك، فإن هذه النماذج لا تتعلم مساحة كامنة تمثيلية لتوزيع الجملة، مما يجعل من الصعب التحكم في الجيل. لقد حاولت الأعمال الحديثة على تعلم تمثي