ترغب بنشر مسار تعليمي؟ اضغط هنا

كيان غرين غرامة الكتابة دون قاعدة المعرفة

Fine-grained Entity Typing without Knowledge Base

257   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

يعمل العمل الحالي على كتابة كيان غرامة (FET) عادة النماذج التلقائية على مجموعات البيانات التي تم الحصول عليها باستخدام قواعد المعرفة (KB) كشراف بعيد.ومع ذلك، فإن الاعتماد على KB يعني أنه يمكن إعاقة هذا الإعداد التدريبي من خلال عدم وجود أو عدم انتظام KB.لتخفيف هذا القيد، نقترح إعدادا جديدا لتدريب نماذج FET: FET دون الوصول إلى أي قاعدة معارف.بموجب هذا الإعداد، نقترح إطار من خطوتين لتدريب نماذج FET.في الخطوة الأولى، نقوم تلقائيا بإنشاء بيانات زائفة مع ملصقات ممتعة من مجموعة بيانات كبيرة غير مسبوقة.ثم يتم تدريب نموذج شبكة عصبي بناء على البيانات الزائفة، إما بطريقة غير مخالفة أو استخدام التدريب الذاتي بموجب الإرشادات الضعيفة من نموذج التعرف على الكيان الحبيبة الخشنة (NER).تظهر النتائج التجريبية أن طريقتنا تحقق أداء تنافسي فيما يتعلق بالنماذج المدربة على مجموعات البيانات ذات الإشراف على KB الأصلي.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تستند نهج كتابة الكيانات التقليدية إلى نماذج تصنيف مستقلة، مما يجعلها من الصعب التعرف على أنواع الكيان المعتمدة والذات طويل الذيل والحبوب. في هذه الورقة، نجادل بأن التبعيات الخارجية والمترنوية المتطودة ضمنيا بين الملصقات يمكن أن توفر معرفة حاسمة لمعا لجة التحديات المذكورة أعلاه. تحقيقا لهذه الغاية، نقترح شبكة تسمية الملصقات (LRN)، والتي الأسباب التسلل تسميات الكيانات الجميلة من خلال اكتشاف واستغلال المعرفة التبعيات الملصقات المتاحة في البيانات. على وجه التحديد، تستخدم LRN شبكة التراجع التلقائي لإجراء منطق استنتاجي ورسم رسمي من السمة الحيوية لإجراء منطق حثي بين الملصقات، والتي يمكن أن تكفذ بشكل فعال، وتعلم وسبب تبعيات التسمية المعقدة في مجموعة تسلسل إلى مجموعة، ونهاية إلى نهاية وبعد تظهر التجارب أن LRN تحقق الأداء الحديثة على معايير كيانات كيانات فائقة الفيرلة القياسية، ويمكن أيضا حل مشكلة تسمية الذيل الطويل بشكل فعال.
تحليل المدونات الصغيرة حيث ننشر ما نقوم بتمكيننا من أداء تطبيقات مختلفة مثل تحليل الاتجاه الاجتماعي وتوصية الكيان. لتتبع الاتجاهات الناشئة في مجموعة متنوعة من المجالات، نريد تصنيف المعلومات عن الكيانات الناشئة (على سبيل المثال، الصورة الرمزية 2) في م نشورات المدونات الصغيرة وفقا لأنواعها (على سبيل المثال، فيلم). وبالتالي، فإننا نقدم مهمة جديدة للكتابة كيان تقوم بتعيين نوعا غرامة على كل كيان ناشئ عند إجراء انفجار من المشاركات التي تحتوي على هذا الكيان لأول مرة في المدونات الصغيرة. التحدي هو إجراء الكتابة من منشورات المدونات الصغيرة الصاخبة دون الاعتماد على المعرفة السابقة للكيان المستهدف. لمعالجة هذه المهمة، نبني مجموعات بيانات Twitter واسعة النطاق للغة الإنجليزية واليابانية باستخدام الإشراف البعيد الحساسة للوقت. ثم نقترح نموذج الكتابة العصبي المعياري الذي لا ينفدي فقط الكيان وسياقاته ولكن أيضا معلومات المعتوه في مشاركات متعددة. لكتابة الكيانات الناشئة "الكتاني" تعني لغة البرمجة الناشئة ولعبة الألواح الكلاسيكية)، والسياقات الكلاسيكية صاخبة، ونطير محدد سياق يجد سياقات ذات صلة للكيان الهدف. تؤكد التجارب على مجموعات البيانات Twitter فعالية نموذج الكتابة لدينا ومنح السياق.
يهدف كتابة كيان الرسم البياني للمعرفة إلى أن ينتج أنواع الكيانات المفقودة في الرسوم البيانية المعرفة التي تعد قضية مهمة ولكنها غير مستحقة.تقترح هذه الورقة طريقة رواية لهذه المهمة من خلال الاستفادة من المعلومات السياقية للكيانات.على وجه التحديد، نقوم بتصميم آليات الاستدلال: I) N2T: استخدام كل جار كل جار بشكل مستقل لاستنتاج نوعه؛2) AGG2T: إجمالي جيران كيان لاستنتاج نوعها.ستنتج هذه الآليات نتائج الاستدلال المتعددة، وتستخدم طريقة تجميع مضاعفة بشكل كبير لتوليد نتيجة الاستدلال النهائي.علاوة على ذلك، نقترح وظيفة خسارة جديدة لتخفيف المشكلة السلبية الخاطئة أثناء التدريب.تجارب على اثنين من كلغ العالم الحقيقي توضح فعالية طريقتنا.يمكن الحصول على شفرة المصدر وبيانات هذه الورقة من https://github.com/cciiplab/cet.
غالبا ما يتطلب تدريب نماذج NLP كميات كبيرة من بيانات التدريب المسمى، مما يجعل من الصعب توسيع النماذج الحالية لغات جديدة.في حين تعتمد Transfer-Transfer عبر اللغات الصفرية على تضييق كلمة متعددة اللغات لتطبيق نموذج تدرب على لغة واحدة لآخر، فإن Yarowski و Ngai (2001) يقترح طريقة الإسقاط التوضيحي لتوليد بيانات التدريب دون شرح يدوي.تم استخدام هذه الطريقة بنجاح مهام التعرف على الكيان المسمى وكتابة الكيان الخشن الخشبي، لكننا نظهر أنه من غير متوقع من قبل النقل الصفرية عبر اللغات عند تطبيقها على مهمة مماثلة لكتابة الكيان المحبوس.في دراستنا لطبقتها الجميلة للكتابة من نوع الغش في علم الأطباق الألمانية بالنسبة للألمانية، نظهر أن الإسقاط التوضيحي يضخم ميل النموذج الإنجليزي إلى تسميات المستوى 2 المستويات والضرب عن طريق النقل الصفرية عبر اللغات على ثلاثة مجموعات اختبار رواية.
يعد تدريب الاتساق غير الخاضع للتناسق طريقة للتعلم شبه الإشرافه يشجع الاتساق في التنبؤات النموذجية بين البيانات الأصلية والمعزز.للحصول على التعرف على الكيان المسمى (NER)، زيادة النهج الحالية تسلسل الإدخال مع استبدال الرمز المميز، بافتراض التعليقات الت وضيحية على المناصب المستبدة دون تغيير.في هذه الورقة، نستكشف استخدام إعادة الصياغة كمخطط تعزز البيانات أكثر مبدئيا للتدريب على الاتساق غير المدعوم.على وجه التحديد، نقوم بتحويل المجال العشوائي الشرطي (CRF) إلى وحدة تصنيف متعدد العلامات وتشجيع الاتساق على مظهر الكيان بين التسلسلات الأصلية المعززة.تبين التجارب أن طريقتنا فعالة بشكل خاص عندما تكون التعليقات التوضيحية محدودة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا