نحن نعتبر مشكلة تعلم إصلاح برامج ج خاطئة عن طريق تعلم المحاذاة المثلى مع البرامج الصحيحة. نظرا لأن الأساليب السابقة إصلاح خطأ واحد في السطر، فمن المحتمل أنه لا مفر منه لتكرار عملية التثبيت حتى لا تبقى أخطاء. في هذا العمل، نقترح إطارا تعليمي تسلسل تسلسل جديد لتحديد أخطاء برنامج متعددة في وقت واحد. نقدم نهج وضع العلامات على البيانات المسافة من المسافة لتصحيح خطأ البرنامج. بدلا من وصف مثال إصلاح البرنامج عن طريق إقران برنامج خاطئ مع إصلاح خط، نعلم المثال عن طريق تحديد برنامج خاطئ مع محاذاة مثالية إلى البرنامج الصحيح المقابل الناتج عن حساب التحرير المسافة. نقيم نهجنا المقترح في مجموعة بيانات متاحة للجمهور (Deepfix DataSet) التي تتكون من برامج C الخاطئة المقدمة من طلاب البرمجة المبتدئين. على مجموعة من 6،975 برنامجا خاطئا من بيانات DataSet Deepfix، فإن نهجنا يحقق النتيجة الحديثة من حيث معدل الإصلاح الكامل على DeepFix DataSet (بدون بيانات إضافية مثل رسالة خطأ التحويل البرمجي أو رموز مصدر إضافية مسبقا -تمرين).
We consider the problem of learning to repair erroneous C programs by learning optimal alignments with correct programs. Since the previous approaches fix a single error in a line, it is inevitable to iterate the fixing process until no errors remain. In this work, we propose a novel sequence-to-sequence learning framework for fixing multiple program errors at a time. We introduce the edit-distance-based data labeling approach for program error correction. Instead of labeling a program repair example by pairing an erroneous program with a line fix, we label the example by paring an erroneous program with an optimal alignment to the corresponding correct program produced by the edit-distance computation. We evaluate our proposed approach on a publicly available dataset (DeepFix dataset) that consists of erroneous C programs submitted by novice programming students. On a set of 6,975 erroneous C programs from the DeepFix dataset, our approach achieves the state-of-the-art result in terms of full repair rate on the DeepFix dataset (without extra data such as compiler error message or additional source codes for pre-training).
المراجع المستخدمة
https://aclanthology.org/
ندرس مشكلة جديدة في التعلم عبر التحويلات المتبادلة لحدث القرار (ECR) حيث يتم تكييف النماذج المدربة على البيانات من لغة مصدر للتقييمات باللغات المستهدفة المختلفة. نقدم النموذج الأساسي الأول لهذه المهمة بناء على نموذج لغة XLM-Roberta، وهو نموذج لغوي مت
نقدم نهجا للتعلم اكتشاف سقالة لإدخال مفاهيم في دورة معالجة اللغة الطبيعية تهدف إلى طلاب علوم الكمبيوتر في مؤسسات الفنون الليبرالية.نحن نصف بعض أهداف هذا النهج، بالإضافة إلى تقديم طرق محددة أن أربعة من المهام التي تعتمد على اكتشافها تجمع بين مفاهيم مع
تعاني نماذج الترجمة الآلية العصبية غير التلقائية (NART) من مشكلة الوسائط المتعددة والتي تسبب عدم تناسق الترجمة مثل تكرار الرمز المميز. حاولت معظم الأساليب الأخيرة حل هذه المشكلة من خلال النمذجة الضمنية التبعيات بين المخرجات. في هذه الورقة، نقدم Align
محول غير تلقائي هو نموذج توليد نص واعد.ومع ذلك، لا تزال النماذج الحالية غير التلقائية التي لا تزال تقف وراء نظرائها التلقائي في جودة الترجمة.نحن نعزو فجوة الدقة هذه إلى عدم وجود نمذجة التبعية بين مدخلات فك التشفير.في هذه الورقة، نقترح CNAT، والتي تتع
يعد تحسين تعميم النموذج حول البيانات المحتفظ بها أحد الأهداف الأساسية في التفكير المعني بالمعنى. لقد أظهر العمل الحديث أن النماذج المدربة على مجموعة البيانات مع الإشارات السطحية تميل إلى أداء جيد في الاختبار السهل مع الإشارات السطحية ولكنها تؤدي بشكل