ندرس مشكلة جديدة في التعلم عبر التحويلات المتبادلة لحدث القرار (ECR) حيث يتم تكييف النماذج المدربة على البيانات من لغة مصدر للتقييمات باللغات المستهدفة المختلفة. نقدم النموذج الأساسي الأول لهذه المهمة بناء على نموذج لغة XLM-Roberta، وهو نموذج لغوي متعدد اللغات مسبقا. نحن نستكشف أيضا الشبكات العصبية اللغوية اللغوية (LANN) التي تتولى التمييز بين النصوص من المصدر واللغات المستهدفة لتحسين تعميم اللغة ل ECR. بالإضافة إلى ذلك، نقدم آليتين رواية لتعزيز التعلم التمثيلي العام ل LANN، والتي تتميز بما يلي: (1) محاذاة متعددة الرؤية لمعاقبة محاذاة التسمية العاصمة من Aquerence من الأمثلة في المصدر واللغات المستهدفة، و (2) النقل الأمثل إلى حدد أمثلة وثيقة في المصدر واللغات المستهدفة لتوفير إشارات تدريبية أفضل لتمييز اللغة. أخيرا، نقوم بإجراء تجارب مكثفة ل ECR عبر اللغات من الإنجليزية إلى الإسبانية والصينية لإظهار فعالية الأساليب المقترحة.
We study a new problem of cross-lingual transfer learning for event coreference resolution (ECR) where models trained on data from a source language are adapted for evaluations in different target languages. We introduce the first baseline model for this task based on XLM-RoBERTa, a state-of-the-art multilingual pre-trained language model. We also explore language adversarial neural networks (LANN) that present language discriminators to distinguish texts from the source and target languages to improve the language generalization for ECR. In addition, we introduce two novel mechanisms to further enhance the general representation learning of LANN, featuring: (i) multi-view alignment to penalize cross coreference-label alignment of examples in the source and target languages, and (ii) optimal transport to select close examples in the source and target languages to provide better training signals for the language discriminators. Finally, we perform extensive experiments for cross-lingual ECR from English to Spanish and Chinese to demonstrate the effectiveness of the proposed methods.
المراجع المستخدمة
https://aclanthology.org/
في هذه الورقة، نقترحنا بمحاذاة تمثيلات الجملة من لغات مختلفة إلى مساحة تضمين موحدة، حيث يمكن حساب أوجه التشابه الدلالي (كل من الصليب اللغوي والأونولينغ) بمنتج نقطة بسيطة.نماذج اللغة المدربة مسبقا صقلها بشكل جيد مع مهمة تصنيف الترجمة.يستخدم العمل الحا
اقترحت الدراسات الحديثة طرق مختلفة لتحسين تمثيلات الكلمات متعددة اللغات في الإعدادات السياقية بما في ذلك التقنيات التي تتماشى بين المساحات المصدر والهدف المستهدف.بالنسبة للمشروعات السياقية، تصبح المحاذاة أكثر تعقيدا كما نستفيد إلى السياق بالإضافة إلى
أصبحت نماذج اللغة متعددة اللغات المحددة مسبقا أداة شائعة في تحويل قدرات NLP إلى لغات الموارد المنخفضة، وغالبا مع التعديلات.في هذا العمل، ندرس أداء، قابلية القابلية للضغط، والتفاعل بين اثنين من هذه التكيفات: تكبير المفردات وتروية النصوص.تقييماتنا حول
نحن نعتبر مشكلة تعلم إصلاح برامج ج خاطئة عن طريق تعلم المحاذاة المثلى مع البرامج الصحيحة. نظرا لأن الأساليب السابقة إصلاح خطأ واحد في السطر، فمن المحتمل أنه لا مفر منه لتكرار عملية التثبيت حتى لا تبقى أخطاء. في هذا العمل، نقترح إطارا تعليمي تسلسل تسل
لقد أظهرت الأدوات الحديثة الأخيرة أن نماذج تعلم الرسم البياني المعرفي (KG) عرضة للغاية للهجمات الخصومة.ومع ذلك، لا تزال هناك ندرة من تحليلات الضعف لمحاذاة الكيان المتبادلة تحت هجمات الخصومة.تقترح هذه الورقة نموذج هجوم مخدر مع تقنيات هجومين جديدة لإشر