نقدم نهجا للتعلم اكتشاف سقالة لإدخال مفاهيم في دورة معالجة اللغة الطبيعية تهدف إلى طلاب علوم الكمبيوتر في مؤسسات الفنون الليبرالية.نحن نصف بعض أهداف هذا النهج، بالإضافة إلى تقديم طرق محددة أن أربعة من المهام التي تعتمد على اكتشافها تجمع بين مفاهيم معالجة اللغة الطبيعية المحددة مع مهارات تحليلية أوسع.نقول أن هذا النهج يساعد في إعداد الطلاب للحصول على العديد من المسارات المستقبلية الممكنة التي تنطوي على تطبيق وابتكار تكنولوجيا NLP من خلال التركيز على الملاحة التجريبية للبيانات، وتصميم التجريب، والوعي في تعقيدات وتحديات التحليل.
We present a scaffolded discovery learning approach to introducing concepts in a Natural Language Processing course aimed at computer science students at liberal arts institutions. We describe some of the objectives of this approach, as well as presenting specific ways that four of our discovery-based assignments combine specific natural language processing concepts with broader analytic skills. We argue this approach helps prepare students for many possible future paths involving both application and innovation of NLP technology by emphasizing experimental data navigation, experiment design, and awareness of the complexities and challenges of analysis.
المراجع المستخدمة
https://aclanthology.org/
تم استخدام مطالبات اللغة الطبيعية مؤخرا لتخصيص نماذج اللغة في أداء مهام منظمة العفو الدولية الأخرى، باستخدام نموذج تعبئة داخل الفراغ (Petroni et al.، 2019) أو نموذج استقراء قليل بالرصاص (براون وآخرون، 2020). على سبيل المثال، تحتفظ نماذج اللغة بالمعرف
يعد تحسين تعميم النموذج حول البيانات المحتفظ بها أحد الأهداف الأساسية في التفكير المعني بالمعنى. لقد أظهر العمل الحديث أن النماذج المدربة على مجموعة البيانات مع الإشارات السطحية تميل إلى أداء جيد في الاختبار السهل مع الإشارات السطحية ولكنها تؤدي بشكل
يعد إعادة صياغة نص إعادة صياغة مهمة NLP طويلة الأمد لديها تطبيقات متنوعة على مهام NLP المصب. ومع ذلك، تعتمد فعالية الجهود الحالية في الغالب على كميات كبيرة من البيانات الذهبية المسمى. على الرغم من أن المساعي غير الخاضعة للإشعال قد اقترحت تخفيف هذه ال
نحن نعتبر مشكلة تعلم إصلاح برامج ج خاطئة عن طريق تعلم المحاذاة المثلى مع البرامج الصحيحة. نظرا لأن الأساليب السابقة إصلاح خطأ واحد في السطر، فمن المحتمل أنه لا مفر منه لتكرار عملية التثبيت حتى لا تبقى أخطاء. في هذا العمل، نقترح إطارا تعليمي تسلسل تسل
لكل مهمة حوار موجهة نحو تحقيق الأهداف ذات أهمية، يجب جمع كميات كبيرة من البيانات للحصول على التعلم المنتهي للنظام الحوار العصبي.جمع هذه البيانات هي عملية مكلفة وتستغرق وقتا طويلا.بدلا من ذلك، نوضح أنه يمكننا استخدام كمية صغيرة فقط من البيانات، والتي